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Abstract

The data sparsity problem significantly hinders the performance
of recommender systems, as traditional models rely on limited his-
torical interactions to learn user preferences and item properties.
While incorporating multimodal information can explicitly rep-
resent these preferences and properties, existing works often use
it only as side information, failing to fully leverage its potential.
In this paper, we propose MDVT, a model-agnostic approach that
constructs multimodal-driven virtual triplets to provide valuable
supervision signals, effectively mitigating the data sparsity problem
in multimodal recommendation systems. To ensure high-quality vir-
tual triplets, we introduce three tailored warm-up threshold strate-
gies: static, dynamic, and hybrid. The static warm-up threshold
strategy exhaustively searches for the optimal number of warm-up
epochs but is time-consuming and computationally intensive. The
dynamic warm-up threshold strategy adjusts the warm-up period
based on loss trends, improving efficiency but potentially missing
optimal performance. The hybrid strategy combines both, using the
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dynamic strategy to find the approximate optimal number of warm-
up epochs and then refining it with the static strategy in a narrow
hyper-parameter space. Once the warm-up threshold is satisfied,
the virtual triplets are used for joint model optimization by our
enhanced pair-wise loss function without causing significant gradi-
ent skew. Extensive experiments on multiple real-world datasets
demonstrate that integrating MDVT into advanced multimodal
recommendation models effectively alleviates the data sparsity
problem and improves recommendation performance, particularly
in sparse data scenarios.
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1 Introduction

The rapid development of the internet has led to an information
explosion, making recommender systems indispensable for navi-
gating vast amounts of data. Traditional recommender systems rely
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on modeling user preferences through historical user-item interac-
tions [6, 9, 30, 31]. However, the data sparsity problem significantly
hinders the performance of these systems, as they depend solely
on limited historical interactions to implicitly learn user prefer-
ences and item properties. Incorporating multimodal information
[2, 15]—such as images and textual descriptions—allows for explicit
representation of user preferences and item properties, potentially
alleviating the data sparsity problem. Several recent works [3, 8, 34]
have integrated multimodal content into recommendation models.
For example, VBPR [8] extends the matrix factorization framework
to incorporate item visual features, while ACF [3] introduces a hier-
archically structured attention network to capture user preferences
at the component level. Graph Convolutional Networks (GCNs)
have also gained attention in this context [7, 27, 28, 39, 44]. Models
like MMGCN [28] and GRCN [27] employ GCNs to integrate multi-
modal information into the message-passing process, enhancing
the inference of user and item representations. To further exploit
the rich multimodal information, LATTICE [39] and FREEDOM
[44] construct item-item graphs to aggregate semantically similar
items. LGMRec [7] utilizes hyper-graph structures to learn both
global and local representations, capturing complex relationships
in multimodal information.

However, existing works typically use multimodal information
only as side information to enhance the learning of user prefer-
ences, failing to fully leverage its potential. They primarily focus on
improving item representations using multimodal content, while
user representations are still learned solely from historical interac-
tions. This limitation becomes more pronounced in data sparsity
scenarios, where users have limited interaction records.

We propose that the similarity between user and item modal-
ity representations can serve as valuable supervision signals be-
yond explicit user-item interactions. To leverage this insight, we
introduce Multimodal-Driven Virtual Triplets (MDVT), a novel,
model-agnostic approach that constructs virtual triplets based on
multimodal information. These virtual triplets provide informative
supervision signals, effectively mitigating the data sparsity problem
in multimodal recommendation systems. A key challenge is that,
unlike items, users do not have inherent multimodal information in
recommendation scenarios. Users’ modality representations must
be learned from scratch by initializing embeddings randomly and
refining them through model optimization. Consequently, the ini-
tial similarity between user and item modality representations may
not provide high-quality supervision signals. To address this, we
introduce three tailored warm-up threshold strategies:

e Static Warm-up Threshold Strategy: This strategy exhaus-
tively searches for the optimal number of warm-up epochs, en-
suring that user modality representations are sufficiently learned
before constructing virtual triplets. While effective, it is time-
consuming and computationally intensive due to the thorough
hyper-parameter tuning required.

e Dynamic Warm-up Threshold Strategy: This strategy adjusts
the warm-up period based on the trend of loss changes during
training. It improves efficiency by reducing the need for extensive
hyper-parameter tuning, automatically determining when user
representations are adequately learned. However, it may not

Jinfeng Xu et al.

always find the optimal number of warm-up epochs compared
to the static strategy.

e Hybrid Warm-up Threshold Strategy: Combining the strengths
of both strategies, the hybrid strategy first employs the dynamic
strategy to find the approximate optimal number of warm-up
epochs and then applies the static strategy within a narrow hyper-
parameter space. This allows for efficient training with a balance
between computational cost and performance optimization.

Once the warm-up threshold is satisfied, the virtual triplets are
used for joint model optimization through our enhanced pair-wise
loss function, enhancing the learning process without causing sig-
nificant gradient skew [13, 38]. Our MDVT approach is plug-and-
play and can be easily integrated into any existing multimodal
recommendation model, improving their performance, particularly
in data sparsity scenarios. To validate the effectiveness of MDVT, we
conducted extensive experiments on multiple real-world datasets
adopting various advanced multimodal recommendation models.
The results demonstrate that integrating MDVT into these mod-
els significantly alleviates the data sparsity problem and improves
recommendation performance, especially for users with limited
interaction records. Additionally, we would like to highlight the
key distinction between our work and prior studies. Our virtual
triplets are constructed based on the similarity between dynamically
learned user and item representations, which are better aligned
with the recommendation task with a sufficient warm-up phase. In
contrast, prior works typically construct virtual samples based on
the similarity of raw features between items.

2 Preliminary

In this section, we provide an overview of graph collaborative filter-
ing (GCF), the common paradigm of advanced multimodal recom-
mendations, which adopts graph neural network (GNN) into collab-
orative filtering (CF) with multimodal features. CF tasks usually con-
tains a user set U = {uy, ..., u|fu|} and an item set 7 = {iy, ..., i‘I|}.
In multimodal scenarios, each item contains multiple features, we
introduce modality-specific item embedding i"”* for each item i
belonging to the set of modalities M. The user-item interaction
matrix is denoted as R € {0, 1} UIXI 71, Specifically, each entry Ry, ;
indicates whether the user u is connected to item i, with a value
of 1 representing a connection and 0 otherwise. GCF naturally
constructs the bipartite graph by user-item interaction matrix R.
This graph can be denoted by G = (U, I, E), where U, I serve as
the graph vertices, and & denotes the edge set. For each user-item
pair (u, i) that satisfies R;,; = 1, there exists bidirectional edges
(u,i) € & and (i, u) € E. We random initialize Eym € RIm*IUl o
represent user embedding with modality m. E;m € R%m* 171 repre-
sents item initialized embedding with modality m, which extracted
by pre-trained encoders. Here dy, represents the hidden dimension-
ality. Based on the user-item graph G, GNNs conduct neighbor
aggregation to enhance user/item embeddings for extracting high-
order user-item collaborative signals. Take the most widely-used
GNN backbone LightGCN [9] as an example, the embeddings for
user u and item i in the [-th layer are:

1 1 1 (- 1 1 1 (-
61(1,31 =7 Ee](-m 1), el(m) =7 —ez(,m 1), (1)
u L olio)es P



MDVT

where d; denotes degree of node. eil) represents node embedding

in [-th layer. After L layers of neighbor aggregation, the final repre-
sentations of modality m for user u and item i as:

L

a I a l

&y, = Z €, iy = Z € . (2)
=0

1=0
The predicted user-item relation score can be calculated by 7, ; =
DimeM (é,;'—m €;,,). With the prediction scores 7, ;, the GNN models
are optimized by minimizing the BPR loss function [20]:

-prr = Z

(w,it,i=)eD

—log(o(Ju,it = Jui-)), ®)

where triplet training dataset 9 contains all positive user-item
pairs (u,i*) € & and sampled negative user-item pairs (u,i”) ¢ &E.
o(-) denotes activation function. Though the above GCF paradigm
achieves state-of-the-art performance in the recommendation field,
its performance is limited by scarce interaction records. In light
of this, this paper proposes MDVT, which leverages informative
and valuable multimodal information to construct virtual training
triplets to mitigate the data sparsity problem.

3 Methodology

In this section, we present our MDVT, a plug-and-play framework,
which can improve all existing multimodal recommendation mod-
els’ performance by constructing virtual training triplets to mitigate
the data sparsity problem. The overall framework of our proposed
MDVR is illustrated in Figure 1!. Our proposed MDVT contains
three main components:

e Multimodal-Driven Virtual Triplets Constructor (Section 3.1):

We construct virtual triplets by the top-n positive and negative
items for each user based on fused multimodal representation.

e Threshold Strategies (Section 3.2): To ensure the quality of
virtual triples, we define three different threshold strategies:
1) Static: a heuristic static warm-up threshold strategy, 2) Dy-
namic: a loss-based dynamic warm-up threshold strategy, and
3) Hybrid: a hybrid warm-up threshold strategy.

¢ Enhanced Pair-wise Loss Function (Section 3.3): Based on
our constructed virtual triplets, we propose a simple yet effective
enhanced pair-wise loss function, which can be directly plugged
into all multimodal recommendation models.

3.1 Multimodal-Driven Virtual Triplets

Compared to traditional recommendation scenarios, items in mul-
timodal recommendation settings contain rich modality features
such as visual and textual information. While most previous mul-
timodal recommendation studies [11, 44] have used multimodal
information merely as side information to infer user preferences,
recent studies [18, 43] in the explainable recommendation field
demonstrate that leveraging multimodal data can explicitly reveal
user preferences and item attributes. Inspired by these explainable
recommendation approaches, we utilize modality information to
provide additional supervision signals to alleviate the data sparsity

While Figure 1 only depicts ID embeddings, visual and textual modalities, it is im-
portant to note that our MDVT is model-agnostic and can be easily applied to all
multimodal recommendation models, regardless of the number and types of modalities
involved.
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problem that recommender systems often suffer from. To better
plug into different multimodal recommendation models, we con-
struct virtual triplets based on the final aggregated representations.
We simplify the final representation aggregation for different mul-
timodal recommendation models as:

é,=F(&,, meM) & =F(, ImeM), (4)

where F(-) represents modality representation fusion operation.
Here, the fused representation contains valuable multimodal infor-
mation [41, 44, 45], which can be used to construct model-agnostic
multimodal-driven virtual triplets. To calculate the top-n positive
and negative representation for each user node to construct virtual
triplets, we maintain a user-item representation similarity matrix
by cosine similarity, formally:

T =
€, €
Syi= —2—. (5)
llewlll&ill
Based on the similarity matrix, for each user, we select the most
similar n and the least similar n items to construct the virtual triplet:

DY = Maxy(Sy|i* € 1), Dy ;- = Maxn(~Syi-[i* € 1),

(6)
where Maxp (-) denotes top-n similarity filter operation. For user
u, Z)Xl.+ and DXJ., contain n positive items and negative items,
respectively. Therefore, we construct a new virtual triplet training
dataset DV, which is updated with model optimization. For each
triplet with user u in this virtual triplet training dataset D" can be
expressed as D) = (u, DV ‘(D:‘;,i—)'

u,it’

3.2 Threshold Strategies

High-quality representations are essential for constructing effective
virtual triplets. It is worth noting that, unlike items—which natu-
rally possess multimodal information such as images and textual
descriptions—users in recommendation scenarios do not inherently
have multimodal information. Therefore, user representations are
initially randomized and progressively refined during training, the
model requires sufficient warm-up epochs to ensure the repre-
sentations are adequately optimized for constructing high-quality
triplets. To this end, we propose three threshold strategies to de-
termine the optimal number of warm-up epochs. These strategies
ensure that virtual triplets are incorporated only when the repre-
sentation quality is sufficient to provide high-quality supervision
signals. Specifically, we propose three warm-up threshold strategies:
Static Warm-up Threshold (Static), Dynamic Warm-up Threshold
(Dynamic), and Hybrid Warm-up Threshold (Hybrid).

3.2.1 Static Warm-up Threshold Strategy. The warm-up epochs
required for learning high-quality representations varies across
different models and hyper-parameter settings (e.g., learning rate,
batch size). Therefore, a simple and effective strategy is to set a pre-
defined threshold 7, and our virtual triplets will jointly optimize
the multimodal recommendation model after 7g epochs training.
For our static warm-up threshold strategy, we search the optimal
number of warm-up epochs within a manually defined threshold
set Sg-. When computational resources are abundant, we can search
for the optimal parameters by exhaustively traversing the hyper-
parameter space. Conversely, when computational resources are
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Figure 1: The overall architecture of our proposed MDVT.

limited, we rely on researchers’ extensive domain knowledge and
experience in model training to define threshold set Sg-.

3.2.2  Dynamic Warm-up Threshold Strategy. In scenarios with lim-
ited computational resources, exhaustively traversing all hyper-
parameters to find the optimal warm-up epoch number is impracti-
cal, and researchers may not be familiar with all existing models
to manually set thresholds appropriately. Therefore, a dynamic
threshold strategy with a lower hyper-parameter tuning cost is
necessary. Inspired by numerous studies [1, 13, 21, 29] on the rela-
tionship between training loss and model convergence, we propose
a dynamic warm-up threshold strategy based on the trend of loss
changes. Specifically, we assess whether the model is approaching
convergence by comparing the ratio of the loss decrease between
the current and previous epochs. When the rate of loss change is
low enough, indicating that the model has sufficiently converged
and this epoch is an approximate optimal threshold 7¢. Then, we
adopt virtual triplets to optimize the multimodal recommendation
model jointly. We define the loss at epoch t as L. Virtual triplets
are incorporated into the model optimization process when the rate
of loss change falls below a pre-defined hyper-parameter g.

3.2.3 Hybrid Warm-up Threshold Strategy. An effective and satis-
factory threshold selection strategy is the hybrid warm-up thresh-
old strategy, which combines the dynamic warm-up threshold strat-
egy and static warm-up threshold strategy. Specifically, it adopts
the dynamic warm-up threshold strategy to find an approximate
optimal threshold 7%, then adopts the static warm-up threshold
strategy within a small scope [7 %" —s, 7%" +5] to find the optimal
threshold 7p, where s is the search scope hyper-parameter. This
hybrid warm-up threshold strategy allows for a high probability of
finding the optimal number of warm-up epochs without searching
the entire hyper-parameter space.

Analysis. The static warm-up threshold strategy requires com-
prehensive hyper-parameter tuning because it involves manually
selecting the optimal number of warm-up epochs through an ex-
haustive search of the hyper-parameter space. In scenarios where
a full traversal of hyper-parameters is feasible, this strategy can ef-
fectively find the optimal number of warm-up epochs, ensuring the

model performs at its best. However, this process is time-consuming
and computationally intensive due to the high demand for hyper-
parameter tuning. In contrast, the dynamic warm-up threshold
strategy reduces the need for extensive hyper-parameter tuning by
automatically selecting the number of warm-up rounds based on
the trend of loss change. This strategy adjusts dynamically to each
model’s loss change trend, allowing for a more efficient training
process with lower hyper-parameter tuning demands. The dynamic
warm-up threshold strategy is particularly beneficial when com-
putational resources are limited. However, despite its advantages,
the dynamic warm-up threshold strategy may not always find the
optimal number of warm-up epochs compared to the static warm-
up threshold strategy with full hyper-parameter traversal. Since it
does not exhaustively explore the hyper-parameter space, there’s
a possibility that it might miss the optimal number of warm-up
epochs for a given model. Therefore, while the dynamic warm-up
threshold strategy improves efficiency and requires less manual tun-
ing, it might sacrifice some performance optimization achievable
through the static method. Moreover, the hybrid warm-up threshold
strategy combines the advantages of both the static and dynamic
warm-up threshold strategies. Specifically, it first adopts the dy-
namic warm-up threshold strategy to find the approximate optimal
number of warm-up epochs. Then, it applies the static warm-up
threshold strategy within a small scope, offering the potential for
optimal performance. We present the procedure in Appendix A.1.

3.3 Enhanced Pair-wise Loss Function

Once the multimodal recommendation model has learned high-
quality representations (when the threshold strategy is satisfied),
we adopt the widely used Bayesian Personalized Ranking (BPR)
loss on our virtual triplet training dataset to optimize the model:

Lubpr = Z

@Y, DY, )eDV

N 1 )
eu,i"—; Z €+ eu,t’—; Z €j-, 8)

i+ Vv
i EDW_J,

—log(o (e &y — & 8ui-)), (7)
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Table 1: Statistics of the three evaluation datasets.

Datasets #Users #Items #Interactions Sparsity Modality

Baby 19,445 7,050 160,792 99.88% VT
Sports 35,598 18,357 296,337 99.95% VT
Clothing 39,387 23,033 278,677 99.97% VT
TikTok 9,319 6,710 59,541 99.90% V,T,A

where we calculate the representation mean of the similar group
and the representation mean of the dissimilar group to get informa-
tive representations of the virtual positive item and negative item,
respectively. We jointly optimize the model with two loss functions:
the BPR loss defined in Eq.3 applied to the training dataset D, and
the BPR loss applied to the virtual training dataset DV as defined
in Eq.7. The final learning loss can be expressed as:

L=(01- A)prr +ALobprs ©)

where A regulates the influence of our virtual training loss Lyp,,-
Note that the users involved in Ly, and Ly, completely overlap,
and each training triplet in both cases consists of one positive item
and one negative item. Adding L, alters the loss magnitude,
so A ensures balanced scaling to prevent gradient skew [13, 38],
enabling smooth joint optimization.

4 Evaluation

We conduct extensive experiments on MDVT, aiming to answer
the following research questions (RQs): RQ1: Can MDVT enhance
the performance of multimodal recommender systems? RQ2: How
do the various components in MDVT affect performance enhance-
ment? RQ3: What are the effectiveness and costs of different thresh-
old strategies in MDVT? RQ4: Can MDVT have a positive impact
on the convergence speed? RQ5: Can MDVT be compatible with
robust training and data augmentation strategies? RQ6: How do
different warm-up threshold strategies work in practical training?
RQ7: What is the impact of key hyper-parameters in MDVT?

4.1 Experimental Settings

4.1.1 Datasets. The experiments are conducted on three real-world
datasets: Baby, Sports, and Clothing from Amazon [19]. All the
datasets comprise textual and visual features in the form of item
descriptions and images. To further evaluate the performance of
MDVT in scenarios involving multiple modalities, we also conduct
experiments on the TikTok dataset [11]. Our data preprocessing
methodology follows the approach outlined in MMRec [42]. Table 1
shows the statistics of these datasets. We adopt two widely used
metrics to evaluate the performance fairly: Recall@K (R@K) and
NDCG@K (N@K). We report the average metrics of all users in the
test dataset under both K = 5 and K = 10. We follow the popular
evaluation setting [7, 44] with a random data splitting 8:1:1 for
training, validation, and testing.

4.1.2  Baselines. We extensively examine the performance of our
MDVT across a variety of multimodal recommendation models,
including MMGCN [28], SLMRec [23], FREEDOM [44], DRAGON
[45], LGMRec [7], and MMSSL [25]. Moreover, we test the compat-
ibility of our MDVT with the adversarial training strategy (AMR
[22]) and LLM-based data augmentation strategy (GPT-4o0 [36]).
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4.1.3 Implementation Details. We retain the standard settings for
all baselines and fix batch size B to 2048. For MDV'T, we apply
a grid search on hyper-parameters A in {0.1,0.2,0.3,0.4,0.5}, and
the value n in Eq. 6 in {1, 2, 4, 8}. For the static warm-up threshold
strategy, we define threshold set as S~ = {0, 5, 10, 20, 40, 80}. We
perform a grid search in {0.1,0.2,0.3,0.4} for hyper-parameter g in
dynamic and hybrid warm-up threshold strategies, a grid search
in {1,2,3,4,5} for hyper-parameter s in hybrid warm-up threshold
strategy. The common optimizer is Adam [12] and all training and
evaluation of all models are conducted on an RTX4090 GPU. For
the GPT-40 data augmentation strategy, we utilize GPT-40 [36] to
augment the raw description via the items’ image for all datasets to
improve the correlation between textual and visual modalities. We
designed the prompt as: ‘[V] Here is the description of an item
and the corresponding picture, please combine the picture
to improve the description quality in one paragraph. The
description is as follows: [T]’, where [V] and [T] are the raw
image and description for each item, respectively.

4.2 Overall Performance (RQ1)

We evaluate the effectiveness of our MDVT with various warm-up
threshold strategies on various models for multimodal recommen-
dation scenarios. From Table 2, we find the following observations:
Observationl: MDVT with all warm-up threshold strategies
can enhance the performance of various multimodal recom-
mendation models. As shown in Table 2, we conduct extensive
experiments with MDVT on five multimodal recommendation mod-
els across three distinct public datasets. The experimental results
demonstrate that all warm-up threshold strategies significantly
improve over all baselines across all evaluation metrics. The static
warm-up threshold strategy consistently achieves superior results
compared to the dynamic warm-up threshold strategy. Moreover,
the hybrid warm-up threshold strategy consistently outperforms
both the static and dynamic warm-up threshold strategies. In sum-
mary, the experimental results validate that leveraging multimodal
information to construct virtual triplets can effectively improve
recommender performance by mitigating the data sparsity problem.
Observation2: Hybrid warm-up threshold strategy can find
ideal warm-up epochs within an affordable hyper-parameter
tuning cost. For all multimodal recommendation models across
all datasets, the dynamic warm-up threshold strategy achieves per-
formance improvements comparable to the static warm-up thresh-
old strategy. This indicates that the dynamic warm-up threshold
strategy can identify approximately optimal warm-up epochs with-
out requiring extensive hyper-parameter tuning or substantial ex-
pert knowledge. Building on this, the hybrid warm-up threshold
strategy utilizes the approximately optimal number of warm-up
epochs found by the dynamic strategy to adopt the static warm-up
threshold strategy within a small scope. Consequently, it finds the
ideal number of warm-up epochs closer to the optimal number and
achieves superior performance improvements within an affordable
hyper-parameter tuning cost.

4.3 Ablation Study (RQ2)

To discern the impact of our MDVT’s core components, we con-
ducted an ablation study with various configurations:
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Table 2: Performance comparison of baselines with or without MDVT on all datasets in terms of Recall@K (R@K) and NDCG@K
(N@K). * indicates the improvement is statistically significant, where the p-value is less than 0.01. (S), (D), and (H) denote Static,
Dynamic, and Hybrid, respectively.

Datasets ‘ Baby Sports ‘ Clothing ‘ TikTok

Metrics | R@5 R@10 N@5 N@10 | R@5 R@10 N@5 N@10 | R@5 R@10 N@5 N@10 | R@5 R@10 N@5 N@10
MMGCN | 0.0240 0.0378 0.0160 0.0200 | 0.0216 0.0370 0.0143 0.0193 | 0.0130 0.0218 0.0088 0.0110 | 0.0331 0.0463 0.0172  0.0231
+MDVT (S) | 0.0255* 0.0418* 0.0169* 0.0221* | 0.0234* 0.0404* 0.0157* 0.0211* | 0.0148" 0.0244" 0.0099* 0.0126" | 0.0381* 0.0539* 0.0201* 0.0268*
Improv. 6.25% 10.58% 5.62% 10.50% | 8.33%  9.19%  9.79%  9.33% | 13.85% 11.93% 12.50% 14.55% | 15.11% 16.41% 16.86% 16.02%
+MDVT (D) | 0.0251* 0.0413* 0.0167* 0.0218"* | 0.0231* 0.0400* 0.0155* 0.0208"* | 0.0148* 0.0244* 0.0099* 0.0126* | 0.0373* 0.0520* 0.0197* 0.0263*
Improv. | 458%  9.26% 437% 9.00% | 6.94% 8.11% 839% 7.77% | 13.85% 11.93% 1250% 14.55% | 12.69% 12.31% 14.53% 13.85%
+MDVT (H) | 0.0257* 0.0420* 0.0170* 0.0224* |0.0236* 0.0406* 0.0158* 0.0213* [0.0148" 0.0244* 0.0099* 0.0126* | 0.0383" 0.0543" 0.0203* 0.0272*
Improv. 7.08% 11.11% 6.25% 12.00% | 9.26%  9.73% 10.49% 10.36% | 13.85% 11.93% 1250% 14.55% | 15.71% 17.28% 18.02% 17.75%
SLMRec | 0.0343 0.0529 0.0226 0.0290 | 0.0429 0.0663 0.0288 0.0365 | 0.0292  0.0452 0.0196 0.0247 | 0.0349 0.0503 0.0188  0.0251
+MDVT (S) | 0.0357* 0.0560* 0.0239* 0.0319* | 0.0458* 0.0705* 0.0307* 0.0388* | 0.0317* 0.0493* 0.0214* 0.0267* | 0.0384* 0.0550* 0.0208* 0.0276"
Improv. | 4.08% 586% 5.75% 10.00% | 6.76% 6.33%  6.60% 630% | 856% 9.07% 9.18%  8.10% | 10.03% 9.34% 10.64% 9.96%
+MDVT (D) | 0.0353* 0.0553* 0.0234* 0.0313* | 0.0456* 0.0701* 0.0305* 0.0385* | 0.0314* 0.0488* 0.0212* 0.0263* | 0.0379* 0.0542* 0.0204* 0.0271*
Improv. 2.92%  454% 354% 7.93% | 629% 573% 590% 548% | 7.53% 7.96% 8.16% 6.48% | 8.60% 7.75% 851%  7.97%
+MDVT (H) | 0.0359% 0.0563* 0.0241* 0.0323* | 0.0460* 0.0709% 0.0309* 0.0391* [0.0319" 0.0497* 0.0216* 0.0270* | 0.0393" 0.0566* 0.0209* 0.0284*
Improv. | 4.66%  6.43%  6.64% 11.38% | 7.23%  6.94%  7.29%  7.12% | 9.25% 9.96% 10.20% 9.31% | 12.61% 1252% 11.17% 13.15%
FREEDOM | 0.0374 0.0627 0.0243 0.0330 | 0.0446 0.0717 0.0291 0.0385 | 0.0388 0.0629 0.0257 0.0341 | 0.0399 0.0589 0.0214  0.0295
+MDVT (S) | 0.0391% 0.0652* 0.0257* 0.0350* | 0.0472* 0.0752* 0.0312* 0.0406* | 0.0410* 0.0662* 0.0275* 0.0361* | 0.0427* 0.0629* 0.0226* 0.0312*
Improv. | 4.55% 3.99% 576% 6.06% | 5.83%  4.88%  7.22% 545% | 5.67% 525% 7.00% 587% | 7.02% 6.79% 561%  576%
+MDVT (D) | 0.0387* 0.0648* 0.0253* 0.0347* | 0.0469* 0.0750* 0.0310* 0.0403* | 0.0405* 0.0655* 0.0270* 0.0354* | 0.0420% 0.0622* 0.0223* 0.0309*
Improv. 3.48%  3.35% 4.12% 515% | 5.16% 4.60% 6.53%  4.68% | 4.38% 4.13% 506% 3.81% | 526% 5.60% 4.21% 4.75%
+MDVT (H) | 0.0398* 0.0662* 0.0262* 0.0357* |0.0476* 0.0757* 0.0315* 0.0410* [0.0412" 0.0665* 0.0277* 0.0364* | 0.0431* 0.0629" 0.0229* 0.0318*
Improv. 6.42%  558% 7.82% 8.18% | 6.73%  558%  8.25% 6.49% | 6.19% 572% 7.78%  6.74% | 8.02% 6.79% 7.01%  7.80%
DRAGON | 0.0380 0.0662 0.0249 0.0345 | 0.0449 0.0752 0.0296 0.0413 | 0.0401 0.0671 0.0270  0.0365 | 0.0451 0.0682  0.0244  0.0341
+MDVT (S) | 0.0396* 0.0689* 0.0262* 0.0360* | 0.0474* 0.0780* 0.0311* 0.0434* | 0.0430* 0.0710% 0.0287* 0.0385* | 0.0475* 0.0718* 0.0259* 0.0362*
Improv. | 4.21% 4.08% 522% 435% | 557% 3.72% 507% 508% | 7.23% 581% 6.30% 548% | 532% 528%  6.15%  6.16%
+MDVT (D) | 0.0391* 0.0685* 0.0259* 0.0357* | 0.0470* 0.0776* 0.0308* 0.0430* | 0.0428* 0.0704* 0.0285* 0.0382* | 0.0471* 0.0712* 0.0257* 0.0359*
Improv. 2.89% 347% 4.02% 3.48% | 4.68% 3.20% 4.05% 4.12% | 6.73% 4.92%  556% 4.66% | 4.43% 440% 533%  5.28%
+MDVT (H) | 0.0398% 0.0692* 0.0264* 0.0364* |0.0479* 0.0788* 0.0314* 0.0440* [0.0432" 0.0713* 0.0288* 0.0387* | 0.0480" 0.0724" 0.0262* 0.0366*
Improv. | 4.74%  4.53%  6.02% 551% | 6.68% 4.79%  6.08%  6.54% | 7.73%  6.26% 6.67% 6.03% | 6.43%  6.16%  7.38%  7.33%
LGMRec | 0.0374 0.0626 0.0249 0.0333 | 0.0446 0.0719 0.0288  0.0387 | 0.0371  0.0555 0.0246 0.0302 | 0.0406 0.0610 0.0217  0.0304
+MDVT (S) | 0.0416* 0.0656* 0.0280* 0.0359* | 0.0474* 0.0769* 0.0311* 0.0417* | 0.0409* 0.0619* 0.0274* 0.0335* | 0.0431* 0.0641* 0.0231* 0.0320*
Improv. | 11.23% 4.79% 12.45% 7.81% | 6.28%  6.95%  7.99%  7.75% | 10.24% 11.53% 11.38% 10.93% | 6.16%  5.08%  6.45%  5.26%
+MDVT (D) | 0.0413* 0.0651* 0.0279* 0.0356* | 0.0471* 0.0762* 0.0308* 0.0412* | 0.0403* 0.0612* 0.0270* 0.0328* | 0.0425* 0.0635* 0.0228* 0.0317*
Improv. | 10.43% 3.99% 12.05% 6.91% | 5.61% 598%  6.94% 6.46% | 8.63% 1027% 9.76% 8.61% | 4.68% 4.10% 507%  4.28%
+MDVT (H) | 0.0417* 0.0660* 0.0281* 0.0360* | 0.0475* 0.0771* 0.0312* 0.0419* [0.0411" 0.0622* 0.0276* 0.0337* | 0.0435" 0.0647" 0.0233* 0.0324*
Improv. | 11.50% 5.43% 12.85% 8.11% | 6.50% 7.23% 833% 8.27% | 10.78% 12.07% 12.20% 11.92% | 7.14% 6.07% 7.37%  6.58%
MMSSL | 0.0369 0.0613  0.0241  0.0326 | 0.0451 0.0693 0.0294 0.0369 | 0.0382 0.0619 0.0253 0.0335 | 0.0395 0.0575 0.0210  0.0287
+MDVT (S) | 0.0396* 0.0655* 0.0257* 0.0348* | 0.0478* 0.0732* 0.0312* 0.0389* | 0.0402* 0.0648* 0.0267* 0.0351* | 0.0423* 0.0613* 0.0224* 0.0305*
Improv. 732%  6.85%  6.64%  6.75% | 5.99%  5.63% 6.12% 542% | 524%  4.68% 553% 478% | 7.09% 6.61% 6.67%  627%
+MDVT (D) | 0.0388* 0.0649* 0.0252* 0.0343* | 0.0473* 0.0727* 0.0308* 0.0385" | 0.0400* 0.0643* 0.0263* 0.0348"* | 0.0419* 0.0609* 0.0221* 0.0302*
Improv. 515% 587% 4.56% 5.21% | 4.88% 4.91% 476% 434% | 471% 3.88% 3.95% 3.88% | 6.08% 591% 524%  5.23%
+MDVT (H) | 0.0404* 0.0667* 0.0262* 0.0354* |0.0486* 0.0745* 0.0317* 0.0396* [ 0.0407* 0.0657* 0.0270* 0.0356* | 0.0429" 0.0621* 0.0228" 0.0310*
Improv. 949% 881% 8.71% 859% | 7.76%  7.50% 7.82%  7.32% | 6.54%  6.14% 6.72% 6.27% | 861% 800% 857% 8.01%

e w/o0-Aggr: This configuration removes the representation aver-
aging operation specified in Eq. 8, resulting in an asymmetry
between the triplets in D and D. Specifically, in DV, each user
is associated with n triplets, whereas in D, each user has 1 triplet.
w/o0-Scale: This configuration removes the align-scale operation
in Eq. 9 by modifying the loss function to L = Ly, + ALypp,-
This alteration causes the virtual triplet loss to introduce signifi-
cant gradient skew when incorporated into the training process.

We conduct extensive experiments for our MDVT across five mul-
timodal recommendation models on the Baby dataset for various
configurations. The findings presented in Figure 2 clearly demon-
strate that our MDVT surpasses all its modified configurations,
thereby confirming the essential role each component plays in
learning high-quality representations. We believe that the inferior

performance of all configurations compared to MDVT is due to
the discrepancy in scale between the model loss during epochs
when virtual triplets participate in joint optimization and the train-
ing loss during the warm-up epochs. This discrepancy leads to
gradient skew, which is similar to that observed in multi-task learn-
ing [13, 38]. To validate our statement, we further investigate the
changes in model loss and recommendation performance through-
out the training phase. Specifically, we visualize the training loss
and recommendation performance (NDCG@10) for two multimodal
recommendation models with our MDVT and its configurations
with the static warm-up threshold strategy (20 epoch warm-up)
on the Baby dataset. The experimental results presented in Figure
3 support our statement. Specifically, compared with MDVT, all
configurations exhibit a significant increase in loss and a noticeable
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Figure 2: Ablation study on key components of MDVT in terms of NDCG@ 10.

decrease in performance after 20 warm-up epochs. Furthermore,
their subsequent training is more unstable and requires longer
training times than MDVT. These observations indicate that our
key component design allows virtual triplets to be added to the
training process without causing significant gradient skew, thereby
maintaining stability and efficiency.

Furthermore, we verify the effect of virtual triples construction.
Specifically, we conducted an ablation study with various configura-
tions: a) MDVT}p, which builds virtual triples via only ID modality.
b) MDVTy,, which builds virtual triples via only visual modality. c)
MDVTr7, which builds virtual triples via only textual modality. d)
MDVT;p_vy, which builds virtual triples via ID and visual modali-
ties. €) MDVTp_r, which builds virtual triples via ID and textual
modalities. f) MDV Ty _ 1, which builds virtual triples via both visual
and textual modalities. g) MDV Ty, which builds virtual triplets
directly based on high and low interaction frequencies. g) MDVTFy,
which top-2n virtual triplets based on representation similarity,
selects the top-n triplets according to interaction frequency. All
experiments adopt the hybrid strategy. According to experimental
results in Table 3, we have the following observations. 1) Mod-
els using only visual/textual modalities perform even worse than
the original model, as the lack of ID causes the generated virtual
triplets to deviate from the recommendation task. 2) The variant
using only ID outperforms the original model, demonstrating the
dominant role of ID. 3) The performance is further improved when
ID is combined with visual/textual modalities. This suggests that
the auxiliary modalities provide more modality information. 4) Con-
structing virtual triplets based on interaction frequency reduces the
personalization of recommendations, thereby degrading the overall
recommendation performance. 5) MDVT achieves the best perfor-
mance, attributed to its ability to fuse informative information from
multiple modalities to achieve optimal performance.

4.4 Sparsity Study (RQ3)

To evaluate the effectiveness of adopting MDVT in advanced multi-
modal recommendation models under various data sparsity scenar-
ios, we conduct experiments on subsets of all three datasets with
differing sparsity levels. In particular, we compare the performance
of three advanced multimodal recommendation models—SLMRec,
FREEDOM, and LGMRec—with and without our MDVT. To ana-
lyze the effect of data sparsity, we categorize user groups based
on their interaction counts in the training set (e.g., the first group
consists of users who have interacted with 1-5 items). As illustrated
in Figure 4, MDVT consistently enhances the performance of these
models across all datasets and sparsity levels, thereby confirming its
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Figure 3: The learning curve when adopting MDVT and its
configurations to optimize the loss on the Baby dataset.
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Figure 4: Sparsity study on three advanced multimodal rec-
ommendation models across three distinct datasets.

effectiveness in diverse sparse scenarios. Furthermore, the improve-
ment in recommendation performance of all models with MDVT
is particularly significant in sparse scenarios, specifically for users
with 1-5 and 6-10 interacted items. We attribute this enhancement
to our virtual triplets being especially effective in sparse scenarios.

4.5 Convergence Speed (RQ4)

In addition, MDVT helps accelerate model training convergence.
We visualized the training loss of three advanced multimodal rec-
ommendation models (MMGCN, FREEDOM, and DRAGON) on
the Baby dataset. Following previous training settings [44, 45], we
used an early stopping strategy with the patience of 20 epochs
and set the maximum number of epochs to 1,000. As shown in
Figure 5, MDVT effectively improves the convergence speed of
all models. We attribute this improvement to the virtual triplets
providing informative supervision signals that accelerate model
training convergence.
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Table 3: Performance comparison for variants on three datasets in terms of Recall@10 (R@10).

Dataset Model ‘ Original MDVT;p MDVTy MDVTr MDVTip_y MDVTip_-r MDVTy_r MDVTp; MDVTg, MDVT
MMGCN 0.0378 0.0381 0.0360 0.0370 0.0401 0.0412 0.0367 0.0354 0.0410 0.0420
SLMRec 0.0529 0.0533 0.0508 0.0519 0.0545 0.0552 0.0515 0.0493 0.0550 0.0563
Baby FREEDOM 0.0627 0.0631 0.0603 0.0617 0.0641 0.0649 0.0613 0.0589 0.0654 0.0662
DRAGON 0.0662 0.0666 0.0644 0.0653 0.0675 0.0682 0.0649 0.0627 0.0688 0.0692
LGMRec 0.0626 0.0633 0.0602 0.0615 0.0643 0.0652 0.0611 0.0522 0.0652 0.0660
MMGCN 0.0370 0.0375 0.0355 0.0362 0.0393 0.0401 0.0359 0.0341 0.0399 0.0406
SLMRec 0.0663 0.0668 0.0645 0.0653 0.0690 0.0702 0.0651 0.0619 0.0699 0.0709
Sports FREEDOM 0.0717 0.0723 0.0696 0.0707 0.0741 0.0751 0.0703 0.0678 0.0751 0.0757
DRAGON 0.0752 0.0757 0.0736 0.0746 0.0770 0.0778 0.0744 0.0699 0.0773 0.0788
LGMRec 0.0719 0.0724 0.0700 0.0711 0.0749 0.0762 0.0708 0.0675 0.0762 0.0771
MMGCN 0.0218 0.0225 0.0202 0.0211 0.0232 0.0237 0.0208 0.0200 0.0239 0.0244
SLMRec 0.0452 0.0461 0.0438 0.0446 0.0481 0.0490 0.0445 0.0420 0.0485 0.0497
Clothing FREEDOM 0.0629 0.0636 0.0615 0.0623 0.0649 0.0657 0.0621 0.0580 0.0655 0.0665
DRAGON 0.0671 0.0681 0.0653 0.0663 0.0692 0.0701 0.0660 0.0633 0.0704 0.0713
LGMRec 0.0555 0.0559 0.0538 0.0549 0.0596 0.0610 0.0545 0.0518 0.0614 0.0622
5 Heck oo ” SRAGON 4.7 Mechanism for Threshold Strategies (RQ6)
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Figure 5: Convergence study on the Baby dataset.
Table 4: Performance comparison for strategies on three
datasets under Recall@5 (R@5) and NDCG@5 (N@5). +M,
+A, and +G denote +MDVT, +AMR, and +GPT-40, respectively.

‘ Datasets ‘ Baby ‘ Sports ‘ Clothing
Models
| Metrics | R@5 N@5 | R@5 N@5 | R@5 N@5
origin 0.0240 0.0160 | 0.0216 0.0143 | 0.0130 0.0110
+M 0.0257 0.0170 | 0.0236 0.0158 | 0.0148 0.0099
MMGCN | +M+A | 0.0260 0.0172 | 0.0239 0.0160 | 0.0150 0.0101
+M+G | 0.0266 0.0176 | 0.0244 0.0163 | 0.0155 0.0104
+M+A+G|0.0268 0.0177 | 0.0246 0.0164 | 0.0157 0.0105
origin 0.0374 0.0249 | 0.0446 0.0288 | 0.0371 0.0246
+M 0.0417 0.0281 | 0.0475 0.0312 | 0.0411 0.0276
LGMRec | +M+A | 0.0420 0.0282 | 0.0477 0.0313 | 0.0414 0.0278
+M+G | 0.0427 0.0288 | 0.0486 0.0318 | 0.0419 0.0281
+M+A+G|0.0431 0.0291|0.0488 0.0320|0.0421 0.0283

4.6 Compatibility with Robust Training and
Data Augmentation Strategies (RQ5)

Existing studies enhance the robustness of multimodal recommen-
dations by adversarial training strategy [14, 22] and data augmen-
tation method [10, 17, 26]. Therefore, we further evaluate the com-
patibility of our MDVT with the adversarial training strategy (AMR
[22]) and LLM-based data augmentation strategy (GPT-4o0 [36]). We
conducted extensive experiments based on two multimodal recom-
mendation models across three public datasets. Table 4 shows that
combining MDVT with both AMR and GPT-4o can further improve
model performance. Additionally, GPT-40 outperforms AMR on
all datasets, which we attribute to GPT-40’s ability to reduce the
inherent gap between visual and textual information of items. No-
tably, simultaneously using both AMR and GPT-40 achieves more
satisfactory performance than adopting either one alone.

strategy, we follow the search range introduced in Section 4.1.3. For
the dynamic warm-up threshold strategy, we set g = 0.1 (as shown
in Section 4.8, g = 0.1 or 0.2 can be applied to all datasets). For the
hybrid warm-up threshold strategy, we first applied the dynamic
strategy with g = 0.1 to estimate the approximately optimal warm-
up epochs 7. Then we adopt the static strategy within the range
[TC4r —s, T4 +5], where s = 2. As shown in Figure 6, the optimal
warm-up epochs for all three strategies are within a similar range.
Moreover, the hybrid strategy combines the advantages of both
static and dynamic strategies, achieving satisfactory performance
with available hyper-parameter adjustment overhead.

4.8 Hyper-parameter Analysis (RQ7)

We evaluate the impact of the key hyper-parameters (4, n, g, and s)
on MDVT’s performance across three Amazon datasets in terms of
Recall@10. For the hyper-parameters A and n, we conduct analyses
based on the hybrid warm-up threshold strategy, as these hyper-
parameters are not related to the choice of warm-up threshold
strategy, and the hybrid warm-up threshold strategy has demon-
strated superior performance over the static and dynamic warm-up
threshold strategies. For the hyper-parameter g, which is contained
in both the dynamic and hybrid warm-up threshold strategies, we
provide analyses based on these two strategies. Similarly, for the
hyper-parameter s, we provide analysis based on the hybrid warm-
up threshold strategy, which is the only strategy that contains s.

Hyper-parameter A and n: From Figure 7 and Figure 8, we have
the following observations. For FREEDOM, DRAGON, and LGM-
Rec across all datasets, the optimal hyper-parameters A and n are
0.2 and 2, respectively. In contrast, for MMGCN and SLMRec, the
optimal hyper-parameters are higher, with A = 0.2 and n = 4 across
all datasets. We attribute this phenomenon to the lower baseline
performance of MMGCN and SLMRec compared to the other mod-
els. These models are more affected by the data sparsity problem
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Figure 6: Mechanics of all three warm-up threshold strategies for two advanced models on the Baby dataset.
008 Baby == Clothing Table 5: Analysis for hyper-parameter g for dynamic and
e | o T e i ) s S s hybrid strategies based on four multimodal recommendation
R e N models across all datasets in terms of Recall@10.
2o ———— —_———— [ .
Models ‘ Datasets ‘ Baby ‘ Sports ‘ Clothing
e IS TS ‘Strategies‘Dynamic Hybrid‘Dynamic Hybrid‘Dynamic Hybrid
Hyper-parameter A Hyper-parameter A Hyper-parameter A
T MGON  — SUMRec . FREEDOM DRAGON  — Lomec g=01 | 00411 0.0416 | 0.0397 0.0404 | 0.0240 0.0242
Figure 7: Performance w.r.t. hyper-parameter . g=02 | 0.0413 0.0420| 0.0400 0.0406 | 0.0244 0.0244
Bab Soorte Clothin MMGCN | ¢g=03 | 0.0401 0.0404 | 0.0390 0.0393 | 0.0231 0.0236
0.8 Y =0 = g=04 | 00382 00388 | 0.0373 0.0379 | 0.0220 0.0225
—_— | . — g=05 | 00365 0.0368| 00359 00362 | 0.0213 0.0217
o . A——
R g=01 | 0.0648 0.0662| 0.0750 0.0757| 0.0653 0.0663
2] | B N — — g=02 | 00643 0.0655| 0.0747 0.0752 | 0.0655 0.0655
004 FREEDOM| g=03 | 00635 00643 | 00736 00743 | 0.0641 0.0647
g=04 | 00622 00628 | 0.0720 0.0726 | 0.0626 0.0630
U wyporparametern  © ' Hyporparametern  © . Hyper-parametern g=05 | 00610 00618 | 0.0703 0.0708 | 0.0618  0.0620
—— MMGCN —— SLMRec —— FREEDOM DRAGON —— LGMRec
Fisure 8: Performance w r t. hvper-parameter n g=0.1 | 0.0680 0.0688 | 0.0776 0.0788| 0.0701  0.0708
g : -I.L.ryper-p : g=02 | 0.0685 0.0692| 00774 00785 | 0.0704 0.0713
0.08 Baby Sports Clothing DRAGON | ¢=03 | 0.0674 0.0679 | 0.0765 0.0773 | 0.0692  0.0699
— g=04 | 00663 00669 | 0.0757 0.0769 | 0.0678 0.0678
20,06 = g=05 | 00648 0.0655| 0.0742 0.0750 | 0.0653 0.0661
i f—
i g=01 | 00648 0.0655| 0.0758 0.0767 | 0.0612 0.0622
=004 g=02 | 0.0651 0.0660| 0.0762 0.0771| 0.0610 0.0618
LGMRec | g=03 | 0.0638 0.0643 | 0.0745 0.0753 | 0.0593 0.0599
T3 33 I 5 g=04 | 00625 00627 | 00724 0.0728 | 0.0570 0.0577
Hyper-parameter s Hyper-parameter s Hyper-parameter s
UUMMGEN  —— SiMRec - FREEDOM DRAGON  — LGMRec g=05 | 00618 00621 | 0.0702 0.0708 | 0.0548  0.0553

Figure 9: Performance w.r.t. hyper-parameter s.

and thus require a larger value of n to fully leverage virtual triplets
for performance enhancement.

Hyper-parameter g and s: From Table 5 and Figure 9, we have
the following observations. For the hyper-parameter g, values of
0.1 and 0.2 are recommended for all five advanced multimodal rec-
ommendation models across all datasets. For the hyper-parameter
s, a value of 2 is sufficient to find the optimal number of warm-
up epochs for all models. Therefore, we conclude that the hybrid
warm-up threshold strategy can achieve satisfactory enhancements
without incurring high hyper-parameter tuning costs.

5 Related Work and Model Details

Due to page limitations, we review recent works and their contribu-
tions in Appendix A.2. Moreover, we provide details for all utilized
models in Appendix A.3. More discussions are in Appendix A.4.

6 Conclusion

In this paper, we aimed to mitigate the data sparsity problem in
multimodal recommendation systems by leveraging multimodal in-
formation more effectively. We propose a novel, model-agnostic ap-
proach called MDVT, which constructs Multimodal-Driven Virtual

Triplets to provide valuable supervision signals for model training.
To ensure the high quality of these virtual triplets, we introduce
three different warm-up threshold strategies tailored to fit various
real-world scenarios. Once the warm-up threshold is satisfied, the
virtual triplets are used for joint model optimization, enhancing the
learning process without causing significant gradient skew. MDVT
is model-agnostic and can be easily integrated into any multimodal
recommendation model. Extensive experiments on multiple real-
world datasets across various advanced models demonstrated the
effectiveness of MDVT. These results confirm that leveraging virtual
triplets can significantly improve recommendation performance
by alleviating the data sparsity problem. In future work, we aim
to develop representation enhancement techniques to improve the
quality of virtual triplets, thereby enhancing supervision signals
and boosting overall model performance.
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MDVT

Algorithm 1: Procedure with Threshold Strategies

Input: Strategy Type type, Threshold Set Sg-, Pre-defined
Hyper-parameter g and s;
Output: Optimal warm-up epochs 7p;
1 Auxiliary Markings: pbar — 0, 7%, and flag = False;
2 while flag = True do

3 Initialize model parameters © and £ = 0;
4 if type = Dynamic or Hybrid then

5 T =0, f = False;

6 while not converged do

7 T =T +1;

10

11

12

13

14

15

16

17

18

19

20

Get fused representations via Eq 1,2, and 4;
Calculate BPR loss Ly, via Eq 3;
if £P # 0, f = False, and % < g then
‘ Update 74" = T, f = True;
end
if f = True then
Get virtual triplet dataset DV via Eq 5-6;
Calculate virtual loss Ly, via Eq 7-8;
end
Calculate final loss £ with Eq 9;
Update LP7¢? by current loss £;
Calculate the gradient of loss Vg £;
Update © by gradient Vg £ with optimizer;

21 end

22 Test model performance P;

23 Update pbar — p, Sq = [T -5, TH +5];
24 end

25 if type = Static or Hybrid then

26 for 75 € Sg-do

27 T =0;

28 while not converged do

29 T =T +1;

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Get fused representations via Eq 1,2, and 4;
Calculate BPR loss Ly, via Eq 3;
if 7 >= 75 then
Get virtual triplet dataset DV via Eq 5-6;
Calculate virtual loss Ly, via Eq 7-8;
end
Calculate final loss £ with Eq 9;
Update £P"¢? by current loss £;
Calculate the gradient of loss Vg £;
Update © by gradient Vg £ with optimizer;

end
Test model performance P;
if £ > PP then
Update Pbar = p, geur = g5;
end

45 end

16 end

47 Update 7o = T

43 end
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A Appendix
A.1 Algorithm and Validation

We present the procedure in Algorithm 1, which integrates our
model-agnostic MDVT into the multimodal recommendation model
with three different warm-up threshold strategies. Note that hyper-
parameters g and s can be easily defined by 0.1 and 2, respectively, to
achieve ideal performance for all models across all datasets, which
are validated empirically in Section 4.8 and Section 4.7.

We validate the effectiveness of these three threshold strategies
in Section 4.2. Furthermore, we provide an in-depth analysis of the
mechanism for these three threshold strategies in Section 4.7. Our
code link can be found in the footnote 3.

A.2 Related Work

Recent studies incorporate multimodal information to mitigate the
data sparsity problem in recommendation systems. Pioneering this
approach, VBPR [8] leverages visual content as side information
in matrix factorization [20], utilizing item images to enhance rec-
ommendations. Building upon this foundation, subsequent works
[4, 5, 16, 37] further integrate both visual and textual modalities to
enrich item representations and improve performance. Advance-
ments in graph-based methods introduce new avenues for mul-
timodal recommendations. MMGCN [28] is the first to integrate
Graph Convolutional Networks (GCNs) to extract modality-specific
features from user-item interactions. To explicitly capture com-
monalities in user preferences and item relationships, models like
DualGNN [24] and LATTICE [39] leverage user-user and item-
item graphs, respectively. Building on LATTICE, FREEDOM [44]
further stabilizes representations by freezing the item semantic
graph and reducing noise in the user-item bipartite graph. Recently,
self-supervised learning and inter-modal relationships have been
explored to enhance recommendation systems. MMSSL [25] and
MENTOR [33] employ contrastive self-supervised learning to align
modalities with collaborative signals, improving performance with-
out extensive labelled data. Additionally, BM3 [45] investigates
inter-modal relationships to boost recommendation accuracy and
modality fusion quality. Furthermore, LGMRec [7] leverages hyper-
graph to capture complex global and local relationships in multi-
modal information. COHESION [32] design a tailored dual-stage
fusion to boost multimodal recommendation performance.

While existing works typically employ multimodal information
only as side information to model user preferences, we propose
leveraging the similarity between user and item modality represen-
tations, which can also provide valuable supervision signals beyond
explicit user-item interactions. We construct virtual triplets based
on multimodal information to capitalize on this, providing infor-
mative supervision signals to mitigate the data sparsity problem.

A.3 Models

In this section, we introduce the five advanced multimodal models

used for evaluation:

e MMGCN [28] applies GCN for each data modality to learn
modality-specific features and then integrates all user-predicted
ratings across modalities to produce the final rating.
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Table 6: Performance comparison for variants on the Baby dataset in terms of NDCG@ 10.

Baby | MMGCN SLMRec ~ FREEDOM DRAGON  LGMRec
MDVT 0.0224 0.0323 0.0357 0.0364 0.0360
MDVT wp w/on | 0.0212(0.6) 0.0315(0.6) 0.0354 (0.6) 0.0360 (0.6) 0.0358 (0.6)
MDVT wp w/own | 0.0200(0.9) 0.0287 (0.9) 0.0337 (0.7) 0.0353(0.7) 0.0339 (0.7)
Original 0.0200 0.0290 0.0330 0.0345 0.0333

Table 7: Performance comparison for variants on the Baby dataset in terms of NDCG@ 10.

Baby | MMGCN SLMRec FREEDOM DRAGON LGMRec
MDVT 0.0224 0.0323 0.0357 0.0364 0.0360
MDVT (w p) 0.0218 (0.9, 4) 0.0318 (0.9, 4) 0.0355 (0.7, 2) 0.0364 (0.7, 2) 0.0358 (0.7, 2)
MDVT+ (wp) | 0.0227 (0.9, [1,4]) 0.0329 (0.9, [1,4]) 0.0357 (0.7, [2,2]) 0.0364 (0.7, [2,2]) 0.0360 (0.7, [2,2])
Original 0.0200 0.0290 0.0330 0.0345 0.0333

o SLMRec [23] leverages a self-supervised learning framework for
multimodal recommendations by establishing a tailored node self-
discrimination task, which reveals hidden multimodal patterns.

o FREEDOM [44] refines LATTICE by freezing the item-item
graph to stabilize item relationships and reducing noise in the
user-item graph to enhance recommendation accuracy.

o DRAGON [40] leverages heterogeneous and homogeneous graphs
to learn high-quality user/item representations.

o LGMRec [7] integrates local embeddings, which capture fine-
grained topological embeddings, with global embeddings consid-
ering hypergraph dependencies among items.

e MMSSL [25] combines modality-aware adversarial training with
cross-modal contrastive learning to learn both cross-modality
and modality-specific features.

A.4 More Discussion

Inspired by CC-GCN [35], we introduced a predefined threshold
T to filter virtual triplets, hypothesizing that 7~ acts as a dynamic
warm-up strategy. Specifically, when the model is undertrained,
user-item similarities are low, and few virtual triplets are con-
structed. To test this, we designed two MDVT variants: MDVT
(w p w/o n) with a warm-up phase and MDVT (w p w/o w,n) with-
out it, both using 7~ instead of the top-n strategy. NDCG@10 results
on the Baby dataset (search space 7 € 0.5,0.6,0.7, 0.8, 0.9) are re-
ported, with best-performing 7~ values in parentheses. According to
experimental results in Table 6, we observed that the MDVT variant
without a warm-up phase (MDVT (w p w/o w,n)) led to negative
optimization effects on SLMRec and showed less improvement on
other models compared to MDVT (w p w/o n). Additionally, this
variant required a higher threshold 7~ to mitigate these issues. To
further investigate, we analyzed the changes in similarity between
user and item representations during the optimization process. We
identified the following reasons: during early training epochs, the
BPR loss fails to fully establish a user-item representation space,
leading to disordered similarities and repeated selection of incorrect
high-similarity items as virtual triplets, disrupting representation
learning. A higher 7~ mitigates this issue by reducing the impact of
such errors. Advanced models like FREEDOM, DRAGON, and LGM-
Rec construct user-item representations more effectively within
5-10 epochs, achieving minor improvements even without a warm-
up phase. However, the MDVT variant with the warm-up phase

(w p w/o n) partially avoids these issues but still underperforms

compared to MDVT. Further analysis showed that for users with
sparse interactions (1-3 records), the warm-up phase left few or no

items meeting the 7~ threshold, worsening popularity bias. Low-
ering 7~ addressed this for sparse users but generated excessive
virtual triplets for dense users, negatively affecting performance.
Furthermore, we considered combining the top-n strategy with
the predefined threshold 7~ to avoid generating excessive virtual
triplets for users with dense interactions. We designed the following
two variants: MDVT (w p) and MDVT+ (w p). The former employs
the top-n strategy to limit the number of virtual triplets constructed
for users with dense interactions. The latter extends this method
by replacing top-n with an interval [n1, n2], ensuring that all users
with sparse interactions can generate at least n1 virtual triplets,
while users with dense interactions generate no more than n2 vir-
tual triplets. We report the NDCG@10 results on the Baby dataset.
For n1, the hyperparameter search range is {0, 1, 2}, and for n or
n2, the search range is {1, 2, 4, 8}. In the table below, the numbers
in parentheses indicate the optimal hyper-parameters selected for
(7", n) or (7, [n1, n2]). Based on the experimental results, we sum-
marize the following observations: the performance of MDVT (w
p) is inferior to both MDVT+ (w p) and MDVT, which validates
our earlier finding that ’for most users with sparse interactions
(1-3 interaction records), after the warm-up phase, there are either
no items or only a few items that satisfy the similarity threshold
T, thereby exacerbating the popularity bias’ Moreover, MDVT+
(w p) is equivalent to MDVT on advanced models such as FREE-
DOM, DRAGON, and LGMRec. Additionally, it slightly outperforms
MDVT on MMGCN and SLMRec. MMGCN and SLMRec have rel-
atively weaker modeling capabilities, introducing noise for users
with sparse interactions. Combining the predefined threshold 7~
and top-n strategy mitigates this issue.

In conclusion, our findings are as follows: 1) The predefined
threshold 7~ alone is insufficient for satisfactory MDVT perfor-
mance due to fundamental differences from CC-GCN. While CC-
GCN uses content-based similarity to construct virtual samples,
MDVT dynamically builds virtual triplets based on evolving user-
item representation similarities during optimization. 2) Combining
the top-n strategy with 7~ outperforms MDVT on weaker models
and is equivalent for advanced models. However, it requires an ad-
ditional top-n interval to ensure sufficient virtual triplets for users
with sparse interactions and demands careful tuning of 7.
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