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Abstract
Modern recommender systems face critical challenges in handling
information overload while addressing the inherent limitations of
multimodal representation learning. Existing methods suffer from
three fundamental limitations: (1) restricted ability to represent
rich multimodal features through a single representation, (2) ex-
isting linear modality fusion strategies ignore the deep nonlinear
correlations between modalities, and (3) static optimization meth-
ods failing to dynamically mitigate the over-smoothing problem
in graph convolutional network (GCN). To overcome these limita-
tions, we propose HPMRec, a novel Hypercomplex Prompt-aware
Multimodal Recommendation framework, which utilizes hyper-
complex embeddings in the form of multi-components to enhance
the representation diversity of multimodal features. HPMRec adopts
the hypercomplex multiplication to naturally establish nonlinear
cross-modality interactions to bridge semantic gaps, which is benefi-
cial to explore the cross-modality features. HPMRec also introduces
the prompt-aware compensation mechanism to aid the misalign-
ment between components and modality-specific features loss, and
this mechanism fundamentally alleviates the over-smoothing prob-
lem. It further designs self-supervised learning tasks that enhance
representation diversity and align different modalities. Extensive
experiments on four public datasets show that HPMRec achieves
state-of-the-art recommendation performance.
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1 Introduction
In the context of the exponential expansion of data volume, users en-
counter a significant challenge of information overload, thereby ren-
dering recommender systems an effective method to mitigate this
problem [15, 39, 41]. In multimodal recommendation scenarios, the
synergy effect across modalities effectively mitigates the inherent
data sparsity problem in traditional recommender systems[40, 45].
Since the data structure of the recommender system has a natural
bipartite graph structure, graph convolutional network (GCN) tech-
nology is also widely used in the recommender system [7, 8, 42, 43].
Recently, the design of representation learning using hypercomplex
algebra has garnered interest, and several works [5, 20, 31, 49] have
started to investigate hypercomplex-based recommender systems
in the conventional recommendation field. This design shares a sim-
ilar motivation with multi-head mechanisms, as it enables parallel
learning of diverse representations. Therefore, hypercomplex alge-
bras offer a more expressive mathematical framework and enhance
the capacity to encode multimodal information.

Despite these works exploring the multimodal recommendation
and hypercomplex embedding ability, they still face three funda-
mental limitations: Limitation 1: Due to the richness of multi-
modal information, it is not sufficient for a single embedding to
fully describe a user/item for each modality, and the traditional
embedding structure restricts the representation diversity of mul-
timodal features. Limitation 2: Existing linear modality fusion
strategies (weighted sums or concatenations) ignore deep nonlinear
correlations between modalities, which makes it difficult to fully
explore the latent relationship between modalities, and leads to sub-
optimal exploration of cross-modality features. Limitation 3: For
the over-smoothing problem, which indicates the representation
tends to be indistinguishable from those of their neighbors during
the message passing in GCN, existing methods [21, 24, 52] manually
design static optimization strategies to mitigate the over-smoothing
problem, without considering the dynamic mechanism.
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To overcome these limitations, we propose the Hypercomplex
Prompt-aware Multimodal Recommendation (HPMRec) frame-
work with the following tailored designs. Inspired by [19], we in-
troduce the Cayley-Dickson algebra, an elegant structure of hy-
percomplex embedding that contains multiple components, as the
structure of each modality’s user/item representation. Based on
this structure, we propose a hypercomplex graph convolution op-
erator that learns these representations, enabling each component
to capture diverse modality-specific features. Secondly, instead of
regular dot products, the hypercomplex multiplication captures
latent relations between two embeddings’ components. We adopt
this multiplication between different modalities’ representations
to capture nonlinear relations, which is beneficial to mine cross-
modality features. In addition, we introduce a learnable prompt to
dynamically compensate for the misalignment of components and
the core modality-specific features loss. Moreover, the diversity of
representations mitigates the over-smoothing problem by ensuring
that the representations of users and items remain distinguish-
able from those of their neighbors. Furthermore, we design two
self-supervised learning tasks. Specifically, we enhance user/item
representation diversity by expanding the discrepancy between
different components in hypercomplex embeddings, and we adopt
cross-modality alignment, which also benefits modality fusion.

To summarize, our contributions are highlighted as follows:
• We propose the HPMRec, which utilizes hypercomplex embed-
ding in the form of multi-components to enhance the representa-
tion diversity of modality-specific features. HPMRec leverages a
novel nonlinear fusion strategy based on hypercomplex multipli-
cation to bridge the semantic gap between modalities.
• We design the prompt-aware compensation mechanism to dy-
namically compensate for component misalignment and core
modality-specific feature loss. This module also alleviates the
over-smoothing problem.
• Our HPMRec integrates self-supervised learning tasks to enhance
modal representation diversity by expanding the discrepancy be-
tween components to enhance the diversity of representation,
and we also implement cross-modality alignment, which is bene-
ficial for modality fusion.
• We conduct comprehensive experiments to show the effective-
ness and robustness of HPMRec. These results show that our
HPMRec outperforms state-of-the-art methods.

2 Related Work
In this section, we will introduce the latest works in multimodal
recommendation methods, the application of hypercomplex algebra
in recommendation systems, and the development of prompts in
recommendation systems.

2.1 Multimodal Recommendation
Tomitigate the data sparsity problem, recentmultimodal recommen-
dation models leverage visual and textual features through matrix
factorization [6, 14] and graph-based architectures [32, 36, 53]. How-
ever, despite performance gains, three critical limitations remain.
First, traditional embedding structures often force rich multimodal
semantics into fixed-dimensional representations, hindering ex-
pressiveness. Second, modality fusion is typically handled via early

[14, 48] or late [32, 36] strategies, both relying on linear operations
that fail to capture latent cross-modality relations. Third, GCN-
based methods such as NGCF [33] and LightGCN [15] suffer from
over-smoothing, which recent multimodal extensions [24, 52] only
mitigate through a static optimization strategy, lacking the ability
of dynamic compensation. To this end, we propose the HPMRec, a
novel framework that can overcome these limitations.

2.2 Hypercomplex-based Recommendation
Hypercomplex-based representation learning has proven effective
in domains like computer vision [55] and natural language pro-
cessing [30]. More recently, researchers have begun applying these
techniques to recommender systems: previous works [4, 19] fo-
cused on pure collaborative filtering using interaction data, while
subsequent studies [5, 20, 31] augmented that foundation by in-
tegrating auxiliary side information. Nevertheless, the inherent
multi-component structure of the hypercomplex embedding makes
it particularly suitable for encoding complex information such as
multimodal features. To the best of my knowledge, no previous
work has leveraged hypercomplex embeddings for multimodal rec-
ommendation. Our proposed HPMRec framework fills this gap and
explores how hypercomplex embedding can benefit multimodal
features through the representation capacity and structure.

2.3 Prompt-based Recommendation
Prompt learning has become an emerging research direction in the
context of large pretrained models [3, 22], and some works explore
the ability of prompt learning in the recommendation field. Graph-
Prompt [23] defines the paradigm of prompts on graphs. To transfer
knowledge graph semantics into task data, KGTransformer [50]
regards task data as a triple prompt for tuning. Additionally, prompt-
based learning has also been introduced to enhance model fairness
[37], sequence learning [38]. Recently, PromptMM [35] proposed
a novel multimodal prompt learning method that can adaptively
guide knowledge distillation. In our HPMRec, we consider using the
prompt’s capabilities to implement a dynamic compensation mecha-
nism of the hypercomplex embedding, so that it can achieve diverse
representations while retaining core modality-specific features. It
also alleviates the inherent over-smoothing problem of graph con-
volutional networks through the diversity of representations. This
design fully and reasonably utilizes the prompt’s capabilities to
improve recommendation performance.

3 Preliminary
3.1 Hypercomplex Algebra
A hypercomplex number ℎ𝑥 ∈ H𝑛 in 𝑛-dimensional real vector
space can be expressed as a representation in the form as follows:

ℎ𝑥 = 𝑥1i1 + 𝑥2i2 + · · · + 𝑥𝑛i𝑛 =

𝑛∑︁
𝑘=1

𝑥𝑘 i𝑘 , (1)

where 𝑥1, 𝑥2, · · · , 𝑥𝑛 denote distinct components of the hypercom-
plex number. The elements i1, i2, · · · , i𝑛 are called hyperimaginary
units, where i1 = 1 represents the vector identity element [1].
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3.2 Cayley–Dickson Construction
The Cayley–Dickson algebraA is a sequence of hypercomplex alge-
bras constructed from the real numbers using the Cayley–Dickson
construction [2, 10]. Higher-dimensional Cayley–Dickson alge-
bras can be obtained by doubling smaller algebras within the Cay-
ley–Dickson construction [18]. Thus, the dimension of these alge-
bras is a power of two. Specifically, such a construction procedure
utilizes the 𝑛-th algebra A𝑛 ∈ H2𝑛 in the sequence to define the
(n+1)-th algebra A𝑛+1 ∈ H2𝑛+1 as follows:

A𝑛+1 = {ℎ𝑎 + ℎ𝑏 i2𝑛+1}, and ℎ𝑎, ℎ𝑏 ∈ A𝑛, (2)

where 𝑛 ∈ N and A0 = R. Here i2𝑛+1 ∉ A𝑛 is the additional
hyperimaginary unit for doubling the dimension of A𝑛 , satisfying
the following rules: (i2𝑛+1)2 = −1, i1i2𝑛+1 = i2𝑛+1i1 and i𝑜 i2𝑛+1 =

−i2𝑛+1i𝑜 = i2𝑛 i𝑜 for all 𝑜 = 2, 3, · · · , 2𝑛 .
The mathematical operations for Cayley-Dickson algebras are

defined recursively [2, 9, 10]. For ℎ𝑥 = ℎ𝑎 + ℎ𝑏 i2𝑛+1 ∈ A𝑛+1, ℎ𝑦 =

ℎ𝑐 + ℎ𝑑 i2𝑛+1 ∈ A𝑛+1; ℎ𝑎 ∈ A𝑛, ℎ𝑏 ∈ A𝑛, ℎ𝑐 ∈ A𝑛, ℎ𝑑 ∈ A𝑛 ;
and 𝛾 ∈ R, several widely utilized operations for Cayley-Dickson
algebras are introduced as follows:
• The addition ofℎ𝑥 andℎ𝑦 is defined as:ℎ𝑥⊕n+1ℎ𝑦 = (ℎ𝑎 ⊕n ℎ𝑐 )+
(ℎ𝑏 ⊕n ℎ𝑑 ) i2𝑛+1 . The subtraction follows the same principle anal-
ogously, but flipping ⊕ with ⊖.
• The conjugate of ℎ𝑥 is defined as: ℎ̄𝑥 = ℎ̄𝑎 − ℎ𝑏 i2𝑛+1 . The con-
jugation for every 𝑎 ∈ R is defined as: 𝑎 = 𝑎. ℎ𝑥 ⊕n+1 ℎ𝑦 =

(ℎ𝑎 ⊕n ℎ𝑐 ) + (ℎ𝑏 ⊕n ℎ𝑑 ) i2𝑛+1 .
• The multiplication of ℎ𝑥 and ℎ𝑦 is defined as: ℎ𝑥 ⊗n+1 ℎ𝑦 =(

ℎ𝑎 ⊗n ℎ𝑐 ⊖n ℎ̄𝑑 ⊗n ℎ𝑏
)
+
(
ℎ𝑎 ⊗n ℎ𝑑 ⊕n ℎ𝑏 ⊗n ℎ̄𝑐

)
i2𝑛+1 .When𝑛 ≥

2, the multiplication is asymmetric.
• The scalar multiplication of ℎ𝑥 by 𝛾 is defined as: 𝛾ℎ𝑥 = 𝛾ℎ𝑎 +
𝛾ℎ𝑏 i2𝑛+1 . Based on this form of mathematical operations, we can
use the low-dimensional algebra operations to study the high-
dimensional algebra operations recursively. We will employ these
mathematical operations of Cayley-Dickson algebras to design
our method HPMRec.

4 Methodology
In this section, we first formulate the problems. Then, we elaborate
on the HPMRec framework. Finally, we discuss the optimization
process of our HPMRec. The overall framework of HPMRec1 is
shown in Figure 1.

4.1 Task Definition
LetU = {𝑢1, ..., 𝑢 |U | } denotes user set,V = {𝑣1, ..., 𝑣 |V | } denotes
item set, and N = U ∪ V includes both user and item sets. We
conceptualize the user-item graph G = (U,V, E), where U,V
serve as the graph vertices, and E denotes the edge set. In the
multimodal scenario, each item contains multiple modality features.
We introduce modality-specific user/item embedding h𝑚

𝑢/𝑣 for each
𝑢/𝑣 belonging to the set of modalitiesM, and we let H𝑚

𝑢/𝑣 denote
the entire representation of user/item. Similarly, we let 𝑝𝑚

𝑢/𝑣 denote
the learnable prompt of each user/item, and we let P𝑚

𝑢/𝑣 denote the
entire learnable prompt of all users/items. The historical interaction
matrix is represented by R ∈ R |U |× |V | , in which 𝑟𝑢𝑣 = 1 indicates
1The code is available at: https://github.com/Zheyu-Chen/HPMRec

that user 𝑢 ∈ U has engaged with item 𝑣 ∈ V and zero otherwise.
The goal of our HPMRec is to use the interaction matrix R and
correlation features of each modality𝑚 ∈ M to predict user 𝑢’s
preference for item 𝑣 that the user has never engaged with before.

4.2 Hypercomplex Multimodal Encoder
To enhance the representation ability, we introduce the hyper-
complex algebra as the structure of representation. This structure
makesmodality-specific features no longer limited to a single vector,
which improves the representation diversity of each node during
the training process and helps to capture users, items, and their rela-
tionships in the user-item interaction graph at a more fine-grained
level. Recent works [48, 53] find that jointly leveraging user-item
heterogeneous graphs and item-item homogeneous graphs can sub-
stantially enhance recommendation performance. Building upon
these findings, we develop a tailored hypercomplex multimodal
encoder architecture to learn modality-specific features through
user-item and item-item graphs. To be specific, we introduce the
Cayley-Dickson algebra, a hypercomplex structure that contains
multiple components, as the structure of the representation. Based
on this structure, we propose a hypercomplex graph convolution op-
erator that learns node representations, enabling each component
to capture diverse modality-specific features.

4.2.1 Hypercomplex Embedding. We utilize the Cayley-Dickson
construction to encode user and item features with modality𝑚 in
the hypercomplex space A𝑚

𝑛+1. For user 𝑢 and item 𝑣 , their hyper-
complex embeddings are defined as h𝑚𝑢 and h𝑚𝑣 , respectively. We
utilize items’ embedding h𝑚𝑣 as an example to illustrate this process:

h𝑚𝑣 = x𝑚𝑣 + y𝑚𝑣 i2𝑛+1 =

2𝑛+1∑︁
𝑘=1

v𝑚
𝑘

i𝑘 , (3)

where𝑛 ∈ N; x𝑚𝑣 =
∑2𝑛
𝑘=1 v𝑚

𝑘
i𝑘 ∈ A𝑚

𝑛 and y𝑚𝑣 =
∑2𝑛+1
𝑘=2𝑛+1 v𝑚

𝑘
i𝑘−2𝑛 ∈

A𝑚
𝑛 are the subalgebras of h𝑚𝑣 ; v𝑚

𝑘
∈ R𝑑 is the real-valued repre-

sentation for component 𝑘 , and 𝑑 denotes the feature dimension.
Similar hypercomplex embedding is defined for user 𝑢.

4.2.2 Heterogeneous Graph. To capture high-ordermodality-specific
features, we construct two user-item graphs G = {G𝑚 | 𝑚 ∈ M}.
Each graph G𝑚 maintains the same graph structure and only re-
tains the node features associated with each modality. Formally,
the message propagation at 𝑙-th graph convolution layer can be
formulated as:

h𝑚𝑣 (𝑙) =
∑︁

𝑢∈N𝑣

1√︁
|N𝑢 |

√︁
|N𝑣 |

h𝑚𝑢 (𝑙 − 1), (4)

h𝑚𝑢 (𝑙) =
∑︁
𝑣∈N𝑢

1√︁
|N𝑢 |

√︁
|N𝑣 |

h𝑚𝑣 (𝑙 − 1), (5)

where h𝑚
𝑢/𝑣 (𝑙) represents the multi-component user/item represen-

tation in modality𝑚 at 𝑙-th graph convolution layer. N𝑢/𝑣 denotes
the one-hop neighbors of 𝑢/𝑣 in G. Then, we compute the final
user/item embedding of each modality, h̄𝑚

𝑢/𝑣 , and describe its ag-
gregation process in detail in Section 4.3.

https://github.com/Zheyu-Chen/HPMRec
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Figure 1: Overall Framework of HPMRec.

4.2.3 Homogeneous Graph. We use 𝑘-NN to establish the item-
item graph based on the item features for each modality 𝑚 to
extract significant semantic relations between items. Particularly,
we calculate the similarity score 𝑆𝑚

𝑣,𝑣′ between item pair (𝑣, 𝑣 ′) ∈ V
by the cosine similarity Sim(·) on their modality original features
𝑓𝑚𝑣 and 𝑓𝑚

𝑣′ .

𝑆𝑚𝑣,𝑣′ = Sim(𝑓𝑚𝑣 , 𝑓𝑚𝑣′ ) =
(
𝑓𝑚𝑣

)⊤
𝑓𝑚
𝑣′

∥ 𝑓𝑚𝑣 ∥


𝑓𝑚
𝑣′


 . (6)

We only retain the top-𝑘 neighbors:

𝑆𝑚𝑣,𝑣′ =

{
𝑆𝑚
𝑣,𝑣′ if 𝑆𝑚

𝑣,𝑣′ ∈ top-𝑘 (𝑆𝑚𝑣,𝑝 | 𝑝 ∈ V)
0 otherwise

, (7)

where 𝑆𝑚
𝑣,𝑣′ represents the edge weight between item 𝑣 and item 𝑣 ′

within modality𝑚. Thereafter, we further build a unified item-item
graph 𝑆 by aggregating all modality-specified graphs 𝑆𝑚 :

𝑆 =
∑︁

𝑚∈M
𝛼𝑚𝑆𝑚 . (8)

Inspired by [53], we freeze each item-item graph after initial-
ization to eliminate the computational cost of the item-item graph
during training. In addition, 𝛼𝑚 is a trainable parameter with the
same initial value for each modality.

4.3 Prompt-aware Compensation
Due to the multi-component structure of hypercomplex embedding,
each component of each modality is able to learn different features,
which poses a challenge to the efficient use of these representa-
tions. As these highly diverse components deviate from the initial

semantic space, the representations of multiple components are
misaligned. Directly concatenating2 these components will result
in a low-quality user/item representation and will even lose the
core modality-specific features.

To this end, we designed the learnable prompt 𝑝 ∈ R𝑑 ·2𝑛+1 to
independently compensate the features learned by each component.
The final embedding for each modality𝑚 is as follows:

h̄𝑚
𝑢/𝑣 =

𝐿∑︁
𝑙=0

h𝑚
𝑢/𝑣 (𝑙) + 𝑝

𝑚
𝑢/𝑣, (9)

where 𝐿 is the number of user-item graph layers. In addition, in
the message passing process of GCN, user/item representation
will inevitably tend to be the same as their neighbors’. HPMRec
allows representations to learn diversity and then uses the learnable
prompt for dynamic compensation, which fundamentally alleviates
the over-smoothing problem. Specifically, the learnable prompt
keeps the core modality-specific features in each component, and
the diversity is retained. Therefore, the diversity ensures that the
representations are not over-smoothing.

4.4 MI Enhancement Fusion Strategy
Previous works [21, 24] adopt linear strategies to fuse modalities,
such as weighted sums or concatenations. However, linear fusion
can not sufficiently mine the latent relation among modalities.

2If we accumulate or calculate the mean of the representations of these components,
we can avoid this problem, but the diverse representations learned in each component
will be lost. It goes against the purpose of adopting the multi-component structure.
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Therefore, we apply hypercomplex algebraic multiplication to
naturally build nonlinear relations among different modalities’ com-
ponents, enhancing the representation’s ability to mine latent cross-
modality features.

H̄𝑖𝑑−𝑣
𝑢/𝑣 = H̄𝑖𝑑

𝑢/𝑣 ⊗𝑛+1 H̄𝑣
𝑢/𝑣, (10)

H̄𝑖𝑑−𝑡
𝑢/𝑣 = H̄𝑖𝑑

𝑢/𝑣 ⊗𝑛+1 H̄𝑡
𝑢/𝑣 . (11)

When two hypercomplex algebras are multiplied, the product
incorporates the nonlinearities and higher-order dependencies be-
tween the original algebras [28]. Next, we add it back to the original
modalities to enhance their cross-modality features, which is bene-
ficial to modality fusion.

Ĥ𝑣
𝑢/𝑣 = H̄𝑣

𝑢/𝑣 + 𝜖1 · H̄𝑖𝑑−𝑣
𝑢/𝑣 , (12)

Ĥ𝑡
𝑢/𝑣 = H̄𝑡

𝑢/𝑣 + 𝜖2 · H̄𝑖𝑑−𝑡
𝑢/𝑣 , (13)

where 𝜖1, 𝜖2 are trainable parameters to control theMI enhancement
strength, which are empirically initialized with 0.1. To simplify the
formula expression, we let Ĥ𝑖𝑑

𝑢/𝑣 = H̄𝑖𝑑
𝑢/𝑣 . Then we calculate the

final user/item representations:

Ĥ𝑢/𝑣 = Con(𝛽𝑚Ĥ𝑚
𝑢/𝑣 | 𝑚 ∈ M), (14)

where the attention weight 𝛽𝑚 is a trainable parameter, which is
initialized with equal value for each modality. Then we enhance the
item representations Ĥ𝑣 by item-item graphs 𝑆 . Ultimately, we fuse
the final user representation and enhanced item representations to
get the final representation:

Ĥ = Con(Ĥ𝑢 , Ĥ
′
𝑣), Ĥ

′
𝑣 = Ĥ𝑣 + 𝑆 · Ĥ𝑣 . (15)

4.5 Self-Superised Learning Tasks
4.5.1 Cross-modality Alignment. We employ self-supervised learn-
ing, taking the mean of the Manhattan distance3 to align ID-visual,
ID-textual, and visual-textual modality pairs. Formally:

L𝑎𝑙𝑖𝑔𝑛 = − 1
|N |

∑︁
𝑛∈N

∑︁
(𝑎,𝑏 ) ∈C

[
|ĥ𝑎𝑛 − ĥ𝑏𝑛 |

]
, (16)

where C ∈ {(𝑖𝑑, 𝑣), (𝑖𝑑, 𝑡), (𝑣, 𝑡)} denote set of modality pairs. This
task brings the representations of each modality closer, which is
beneficial to modality fusion and final rating prediction.

4.5.2 Real-Imag Discrepancy Expansion. We expand the discrep-
ancy among different components to enhance the diversity of
user/item representation. Specifically, we directly take the mean of
the Manhattan distance between the real part and the mean of all
imaginary parts of each modality.

L𝑒𝑥𝑝𝑎𝑛𝑑 = − 1
|N |

∑︁
𝑛∈N

∑︁
𝑚∈M

[
|ĉ𝑚𝑛 − E[d̂𝑚𝑛 ] |

]
, (17)

whereM ∈ {𝑖𝑑, 𝑣, 𝑡}, N = U ∪V , and E[·] represents the mean
calculation of the component-level. ĉ𝑚𝑛 and d̂𝑚𝑛 denote the real part
and imaginary parts of node 𝑛’s representation ĥ𝑚𝑛 , respectively.
3We also considered adopting the Euclidean distance, but since the performance
difference was almost the same and the performance consumption was higher, we
chose an easy-to-use and effective method. In addition, compared with high-order
distances, low-order metrics are more stable and less susceptible to extreme values,
which is conducive to the stability of model training.

Algorithm 1 Learning Process of HPMRec

1: Input:U,V ,M, G, node set N = U ∪V , layer number 𝐿 of
heterogeneous graph G.

2: Output: Optimization loss L
3: Initialize H𝑚

𝑢 , H𝑚
𝑣 , P𝑚𝑢 , P𝑚𝑣 ;

4: for 𝑙 = 1...𝐿 do
5: Conduct message passing in the heterogeneous graph h𝑚𝑣 (𝑙)
← h𝑚𝑢 (𝑙 − 1) with Eq.4, or h𝑚𝑢 (𝑙) ← h𝑚𝑣 (𝑙 − 1) with Eq.5;

6: end for
7: Get pormpt-aware compensated embedding h̄𝑚𝑢 , h̄𝑚𝑣 for each

modality with Eq.9;
8: Construct the unified item-item graph 𝑆 with Eq.6-8;
9: Represent all node embeddings h as the entire node represen-

tation H.
10: Apply hypercomplex multiplication with Eq.10-11;
11: Get enhanced representation Ĥ𝑣

𝑢/𝑣 and Ĥ𝑡
𝑢/𝑣 with Eq.12-13;

12: Attentively fuse all modality representations Ĥ𝑢/𝑣 ← Ĥ𝑚
𝑢/𝑣

with Eq.14;
13: Get final representation Ĥ by item-item graphs 𝑆 with Eq.15.
14: Calculate self-supervised learning loss L𝑠𝑠𝑙 with Eq.16-18;
15: Calculate adaptive BPR loss L𝑟𝑒𝑐 with Eq.19;
16: Get final optimization loss L with Eq.20.

Here is the final self-supervised learning loss, formally:

L𝑠𝑠𝑙 = L𝑎𝑙𝑖𝑔𝑛 + L𝑒𝑥𝑝𝑎𝑛𝑑 . (18)

4.6 Optimization
We adopt LightGCN [15] as the backbone model and employ the
Bayesian Personalized Ranking (BPR) loss [26] as the primary opti-
mization objective. The BPR loss is specifically designed to improve
the predicted preference distinction between positive and negative
items for each triplet (𝑢, 𝑝, 𝑛) ∈ D, whereD represents the training
dataset. In this context, the positive item 𝑝 is one with which user
𝑢 has interacted, while the negative item 𝑛 is randomly selected
from the set of items that user 𝑢 has not interacted with. Formally:

L𝑟𝑒𝑐 =
∑︁

(𝑢,𝑝,𝑛) ∈D
− log(𝜎 (𝑦𝑢,𝑝 − 𝑦𝑢,𝑛)) + 𝜆 · ∥Θ∥22, (19)

where𝜎 represents the sigmoid function, and 𝜆 controls the strength
of 𝐿2 regularization, and Θ denotes the parameters subject to reg-
ularization. The terms 𝑦𝑢,𝑝 and 𝑦𝑢,𝑛 correspond to the ratings of
user 𝑢 for the positive item 𝑝 and the negative item 𝑛, respectively,
computed as ĥ⊤𝑢 · ĥ𝑝 and ĥ⊤𝑢 · ĥ𝑛 . The final loss function is given
by:

L = L𝑟𝑒𝑐 + 𝜆𝑠L𝑠𝑠𝑙 , (20)
where 𝜆𝑠 is the self-superised learning balancing hyper-parameter.

To provide a clearer overview of our HPMRec, we summarize
the learning process of HPMRec in Algorithm 1.

5 Experiments
In this section, we conduct comprehensive experiments to evalu-
ate the performance of our HPMRec framework on four widely
used real-world datasets. The following five research questions
can be well answered through experimental results: RQ1: Does
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HPMRec outperform the state-of-the-art conventional and multi-
modal recommendation methods? RQ2:What impact do the key
modules of our HPMRec framework have on its overall perfor-
mance? RQ3: How does the representation scaling strategy affect
the performance-efficiency trade-off? RQ4: How efficient is HPM-
Rec compared with various state-of-the-art recommender systems?
RQ5:How do different hyper-parameter settings impact the overall
performance of HPMRec?

5.1 Datasets and Evaluation Metrics
To evaluate the performance of our proposed HPMRec in the rec-
ommendation task, we perform comprehensive experiments on
four widely used Amazon datasets [25]: Office, Baby, Sports, and
Clothing. These datasets offer both product descriptions and im-
ages. In line with previous works [44, 46], we preprocess the raw
data with a 5-core setting for both items and users. Additionally, we
utilize pre-extracted 4096-dimensional visual features and obtain
384-dimensional textual features using a pre-trained sentence trans-
former [51]. For a fair evaluation, we employ two widely recognized
metrics: Recall@𝐾 (R@𝐾 ) and NDCG@𝐾 (N@𝐾 ). We present the
average metrics for all users in the test dataset for both 𝐾 = 10 and
𝐾 = 20. We adhere to the standard procedure [53] with a random
data split of 8:1:1 for training, validation, and testing.

Table 1: Statistics of datasets.

Datasets #Users #Items #Interactions Sparsity

Office 4,905 2,420 53,258 99.55%
Baby 19,445 7,050 160,792 99.88%
Sports 35,598 18,357 296,337 99.95%

Clothing 39,387 23,033 278,677 99.97%

5.2 Baselines
To comprehensively evaluate the effectiveness of HPMRec, we con-
duct a systematic comparison with state-of-the-art methods, cat-
egorized into traditional recommendation methods (focusing on
collaborative filtering and graph-based learning) and multimodal
recommendation methods (leveraging multiple modalities such
as visual and textual features). Below, we provide a concise yet
informative overview of each baseline method.
1) Conventional recommendation methods:
• MF-BPR [27]: optimized with Bayesian Personalized Ranking
(BPR) loss, designed for learning user and item embeddings from
implicit feedback.
• LightGCN [15]: removes unnecessary modules: nonlinear acti-
vations to improve recommendation performance.
• SimGCL [47]: enhances representation robustness by injecting
controlled noise into embeddings.
• LayerGCN [52]: alleviating LightGCN’s over-smoothing issue
via residual connections, refining layer-wise aggregation for
deeper GCNs.

2) Multimodal recommendation methods:
• VBPR [14]: extends matrix factorization by incorporating visual
and textual features as side information for items.

• MMGCN [36]: employs separate GCNs per modality and fuses
modality-specific predictions for final recommendations.
• DualGNN [32]: introduces a user-user graph to model latent
preference patterns beyond user-item interactions.
• LATTICE [48]: constructs an item-item graph to capture high-
order semantic relationships among items.
• FREEDOM [53]: enhances LATTICE by freezing the item-item
graph and denoising the user-item graph.
• SLMRec [29]: employs node self-discrimination to uncover mul-
timodal item patterns.
• BM3 [54]: simplifies self-supervised learning via dropout-based
representation perturbation.
• MMSSL [34]: combines modality-aware adversarial training with
cross-modal contrastive learning to disentangle shared andmodality-
specific features.
• LGMRec [13]: unifies local (graph-based) and global (hypergraph-
based) embeddings for multimodal recommendation.
• DiffMM [16]: leverages modality-aware graph diffusion to im-
prove user representation learning.

5.3 Experimental Settings
Following the basic settings of previous works [53], we implement
HPMRec in PyTorch and optimize with the Adam optimizer [17].We
apply Xavier initialization [12] for all initial random embeddings. As
for hyper-parameter settings on HPMRec, we perform a grid search
on the user-item heterogeneous graph G’s GCN layer number 𝐿
in {1, 2, 3}, regularization balancing hyper-parameter 𝜆 in {1𝑒−2,
1𝑒−3, 1𝑒−4}, self-supervised learning balancing hyper-parameter
𝜆𝑠 in {1𝑒−2, 1𝑒−3, 1𝑒−4}. We set 𝑛 in hypercomplex algebra to {0,
1, 2, 3}, which indicate the components number 2𝑛+1 in {2, 4, 8,
16}. We fix the learning rate as 1𝑒−4, and adopt a single-layer GCN
in the item-item homogeneous graph. The 𝑘 of top-𝑘 in the item-
item graph is set as 10. For convergence consideration, we fixed
the early stopping at 20. Following the settings of [51], we update
the best record by utilizing Recall@20 on the validation dataset as
the indicator. All the experiments were conducted on the NVIDIA
GeForce RTX 3090 GPU.

5.4 Overall Performance (RQ1)
Detailed experiment results are shown in Table 2. The optimal
results are highlighted in bold, while the suboptimal ones are un-
derlined. We have the following key observations:

Our framework consistently outperforms all baselines
across all datasets and evaluation metrics, demonstrating both
its effectiveness across datasets with varying scales and sparsity.

The multi-component structure of hypercomplex embed-
dings and the prompt-aware compensation mechanism effec-
tively enhance the ability of representation. The hypercomplex
embedding provides multiple components to capture the diverse
modality-specific features, and the learnable prompt is able to dy-
namically compensate for themisalignment of multiple components
and the loss of core modality-specific features. And due to the diver-
sity of components, the user/item representation is not the same as
the neighbors’, so that it keeps the representation away from over-
smoothing problems. Compared to previous works [21, 24, 52] that
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Table 2: Performance comparison of baselines and HPMRec(our) in terms of Recall@K(R@K) and NDCG@K(N@K).

Model
Office Baby Sports Clothing

R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20 R@10 R@20 N@10 N@20

MF-BPR 0.0572 0.0951 0.0331 0.0456 0.0357 0.0575 0.0192 0.0249 0.0432 0.0653 0.0241 0.0298 0.0187 0.0279 0.0103 0.0126
LightGCN 0.0791 0.1189 0.0459 0.0583 0.0479 0.0754 0.0257 0.0328 0.0569 0.0864 0.0311 0.0387 0.0340 0.0526 0.0188 0.0236
SimGCL 0.0799 0.1239 0.0470 0.0595 0.0513 0.0804 0.0273 0.0350 0.0601 0.0919 0.0327 0.0414 0.0356 0.0549 0.0195 0.0244

LayerGCN 0.0825 0.1213 0.0486 0.0593 0.0529 0.0820 0.0281 0.0355 0.0594 0.0916 0.0323 0.0406 0.0371 0.0566 0.0200 0.0247
VBPR 0.0692 0.1084 0.0422 0.0531 0.0423 0.0663 0.0223 0.0284 0.0558 0.0856 0.0307 0.0384 0.0281 0.0415 0.0158 0.0192

MMGCN 0.0558 0.0926 0.0312 0.0413 0.0378 0.0615 0.0200 0.0261 0.0370 0.0605 0.0193 0.0254 0.0218 0.0345 0.0110 0.0142
DualGNN 0.0887 0.1350 0.0505 0.0631 0.0448 0.0716 0.0240 0.0309 0.0568 0.0859 0.0310 0.0385 0.0454 0.0683 0.0241 0.0299
LATTICE 0.0969 0.1421 0.0562 0.0686 0.0547 0.0850 0.0292 0.0370 0.0620 0.0953 0.0335 0.0421 0.0492 0.0733 0.0268 0.0330

FREEDOM 0.0974 0.1445 0.0549 0.0669 0.0627 0.0992 0.0330 0.0424 0.0717 0.1089 0.0385 0.0481 0.0629 0.0941 0.0341 0.0420
SLMRec 0.0790 0.1252 0.0475 0.0599 0.0529 0.0775 0.0290 0.0353 0.0663 0.0990 0.0365 0.0450 0.0452 0.0675 0.0247 0.0303

BM3 0.0715 0.1155 0.0415 0.0533 0.0564 0.0883 0.0301 0.0383 0.0656 0.0980 0.0355 0.0438 0.0422 0.0621 0.0231 0.0281
MMSSL 0.0794 0.1273 0.0481 0.0610 0.0613 0.0971 0.0326 0.0420 0.0673 0.1013 0.0380 0.0474 0.0531 0.0797 0.0291 0.0359
LGMRec 0.0959 0.1402 0.0514 0.0663 0.0639 0.0989 0.0337 0.0430 0.0719 0.1068 0.0387 0.0477 0.0555 0.0828 0.0302 0.0371
DiffMM 0.0733 0.1183 0.0439 0.0560 0.0623 0.0975 0.0328 0.0411 0.0671 0.1017 0.0377 0.0458 0.0522 0.0791 0.0288 0.0354

HPMRec 0.1092 0.1632 0.0632 0.0778 0.0667 0.1033 0.0357 0.0451 0.0751 0.1129 0.0410 0.0507 0.0658 0.0963 0.0351 0.0429

utilize static optimization to alleviate the over-smoothing problem,
we have superior performance.

Our MI enhancement fusion strategy and self-supervised
learning tasks also positively impact overall performance,
making the framework more robust. Notably, our nonlinear
fusion strategy outperforms existing linear and attention-based
strategies through deeper latent relation exploration. Comprehen-
sive ablation studies in Section 5.5 will systematically dissect each
module’s contribution to overall performance.

Table 3: Performance Comparison on variants of HPMRec.

Variant
Baby Sports

Recall@10 NDCG@10 Recall@10 NDCG@10

𝑤/𝑜 Prompt 0.0592 0.0312 0.0541 0.0297
𝑤/𝑜 MI 0.0657 0.0351 0.0739 0.0403
𝑤/𝑜 SSL 0.0651 0.0343 0.0742 0.0401

𝑤/𝑜 Enhance 0.0640 0.0346 0.0733 0.0398
𝑤 Explicit 0.0654 0.0348 0.0736 0.0403

HPMRec-Split 0.0654 0.0354 0.0708 0.0381
HPMRec-MLP 0.0582 0.0319 0.0682 0.0369

HPMRec 0.0667 0.0357 0.0751 0.0410

5.5 Ablation Study (RQ2 & RQ3)
In this section, we conduct extensive experiments to evaluate the
effectiveness of each module in HPMRec. We also explored how the
node representation’s feature dimension scaling strategy affects the
performance-efficiency trade-off in resource-constrained scenarios.

5.5.1 Effectiveness of key modules of HPMRec (RQ2).

• HPMRec𝑤/𝑜 Prompt: Remove the learnable prompt from each
node representation.
• HPMRec𝑤/𝑜 MI: Remove the MI enhancement operation from
the fusion stage.

Baby Sports0.050

0.060

0.070

0.080 Recall@10

Baby Sports

0.020

0.030

0.040

NDCG@10

w/o Prompt
w/o MI

w/o SSL
w/o Enhance

w Explicit
HPMRec

Figure 2: Effect of key modules in HPMRec.

• HPMRec𝑤/𝑜 SSL: Remove the self-supervised learning tasks.
• HPMRec 𝑤/𝑜 Enhance: Remove both the MI enhancement
operation and the self-supervised learning tasks.
• HPMRec𝑤 Explicit: Explicitly align the prompt with the initial
layer node representation.
Detailed ablation study experiment results are shown in Table 2

and Figure 2. We have the following key observations:
Our multi-component hypercomplex embedding comprehen-

sively explores the representational potential of each node, en-
abling rich and detailed feature extraction. However, introducing
hypercomplex embeddings inevitably results in component-level
misalignment, hindering effective representation learning. To this
end, we propose a prompt-aware compensation mechanism that
adaptively aligns the semantic spaces of different components.
The performance of variant HPMRec 𝑤/𝑜 Prompt shows that
the prompt-aware compensation mechanism is significant for our
framework, and adopting hypercomplex embedding with multi-
component structure alone is not feasible in multimodal scenarios.
According to the result of the variant HPMRec 𝑤/𝑜 Enhance,
with only the hypercomplex embedding and learnable prompt, we
still surpass all baselines, indicating the significant effectiveness of
these two modules.
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The performance degradation observed in variant HPMRec
𝑤/𝑜 MI and variant HPMRec 𝑤/𝑜 SSL confirms the effective-
ness of our MI enhancement fusion strategy and self-supervised
learning tasks. These modules contribute not only to performance
improvements but also to better framework robustness. In partic-
ular, the self-supervised learning module facilitates cross-modal
alignment among ID, visual, and textual representations and en-
hances the diversity of different components for hypercomplex
embedding. Moreover, our MI enhancement fusion strategy, which
is based on hypercomplex multiplication, a naturally nonlinear cal-
culation, outperforms existing linear and attention-based fusion
strategies, demonstrating its superior capability in capturing the
cross-modality features.

In the variantHPMRec𝑤 Explicit, we design the closest explicit
guidance to the motivation of designing the learnable prompt, that
is, aligning the learnable prompt with initial layer node representa-
tions. However, the performance degradation observed in variant
HPMRec𝑤 Explicit demonstrates that the explicit guidance will
harm the ability of the learnable prompt. Therefore, we employ no
optimization task for the learnable prompt explicitly, only utilize the
main recommendation task and self-supervised learning tasks to
implicitly benefit its dynamic optimization. Our HPMRec’s higher
performance results shows the learnable prompt can perform better
in implicit guidance than explicit guidance. We will further discuss
how to maximize the ability of prompt in Section 6.2.
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HPMRec-Split HPMRec-MLP HPMRec

Figure 3: Effect of Dimension Scale Trade-off Strategy.

5.5.2 Feature dimension scale trade-off strategy (RQ3). In Section 5.7,
we found that the best performance of the framework does not gain
advantages when the component number 2𝑛+1 is very large, which
makes it unnecessary to consider the computational resource con-
sumption caused by the limited representation’s feature dimension
increasing, and we also conduct effieiency study in Section 5.6 to
demonstrate the competitive efficiency of our framework. How-
ever, to consider a more comprehensive computation resources sce-
nario, we design the following variant to explore the consumption-
performance trade-off. Detailed ablation study experiment results
are shown in Table 2 and Figure 3.
• HPMRec-Split: In the modality information encoding stage,
each modality representation is partitioned into 2𝑛+1 equal seg-
ments as components.
• HPMRec-MLP: In the modality information encoding stage, this
variant employs an MLP to compress the feature dimension of

each component from 𝑑 to 𝑑/2𝑛+1, which will keep the feature
dimension of each node representation to 𝑑 , instand of 𝑑 · 2𝑛+1.
The dimensionality reduction of variantHPMRec-Split inevitably

sacrifices some representation capacity, thereby capping the frame-
work’s potential performance. Furthermore, the simple dimension
compression of variant HPMRec-MLP makes each component
small and similar, meanwhile loses the diversity of user/item repre-
sentation, which leads to a significant performance degradation.

The performance results of the two variants in Table 3 show that
a sufficient feature dimension is crucial for exploring multimodal
information. If the feature dimension scale is simply limited, the
representation’s capability will be reduced due to the lack of di-
verse modality-specific features. In addition, we found that variant
HPMRec-Split has higher performance than variant HPMRec-
MLP, which shows that although the representation is divided into
multiple components, the origin modality-specific features are com-
plete, ensuring a certain richness and diversity. It can still restore
some representation capabilities under the compensation of the
learnable prompt. The variantHPMRec-MLP, which directly com-
presses the feature dimension of the representation to a very small
scale, not only fails to retain the core modality-specific features but
also loses diversity. Although prompt has the ability to compensate
the core modality-specific features, the user/item representation’s
diversity has been lost. This situation will be more obvious as the
hypercomplex dimension grows, because the feature dimension of
its single component will shrink as the component number grows.

In summary, variant HPMRec-Split reduces both computation
andmemory requirements in resource-constrained scenarios, which
is suitable for scenarios with extremely limited computational re-
sources, whereas variantHPMRec-MLP fails to achieve a favor-
able trade-off between efficiency and effectiveness due to the loss
of component diversity. This ablation study experiment proves
that multimodal information requires a sufficient feature dimen-
sion scale to explore diverse features, which is consistent with our
motivation for using hypercomplex embedding. And the higher
performance of variant HPMRec-Split also indirectly proves the
effectiveness of our prompt-aware compensation mechanism.

5.6 Efficiency Study (RQ4)
We report the training time per epoch and memory usage of HPM-
Rec and baselines in Table 44. After analyzing the results of effi-
ciency, we found that our framework maintains competitive effi-
ciency in terms of training time per epoch and memory usage.

Thanks to the multi-component structure, the node represen-
tation contains rich and diverse modality-specific features. Thus,
these powerful representations enable the framework to achieve
the best performance with fewer convolutional layers on large but
sparse datasets (e.g., Clothing), which means that we are not con-
strained by the high resource consumption of GCN, and have stable
training time on all datasets.

5.7 Hyper-parameter Analysis (RQ5)
To evaluate the hyper-parameter sensitivity of HPMRec, we conduct
comprehensive experiments on four datasets under varying hyper-
parameters settings: Algebra Component Number 2𝑛+1, GCN
4The results are under the best hyper-parameter settings on each dataset.
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Table 4: Comparison of our HPMRec against state-of-the-art
baselines on efficiency. (Time: s/Epoch; Memory: GB)

Dataset Baby Sports Clothing

Metrics Time Memory Time Memory Time Memory

DualGNN 5.63 2.05 11.59 2.81 14.19 3.02
MMGCN 4.09 2.69 14.93 3.91 17.48 4.24
LATTICE 3.20 4.53 11.07 19.93 16.53 28.22
FREEDOM 2.57 2.13 5.65 3.34 6.29 4.15
MMSSL 6.31 3.77 14.67 5.34 17.04 5.81
LGMRec 4.19 2.41 8.38 3.67 9.72 4.81
DiffMM 9.45 4.23 18.61 5.99 23.85 6.54

HPMRec 5.86 1.97 15.80 3.69 13.06 4.51

Layer Number 𝐿, Regularization Balancing Hyper-parameter
𝜆, and Self-supervised Learning Balancing Hyper-parameter
𝜆𝑠 . The best result of each line is marked in Figure 4-7. According
to these results, we have the following observations:

5.7.1 Performance Comparison 𝑤.𝑟 .𝑡 2𝑛+1. We analyze how dif-
ferent the component number 2𝑛+1 influences the performance of
the HPMRec. According to the result in Figure 4, we found that
when component number 2𝑛+1 equal to 4 (𝑛 = 1), HPMRec achieves
optimal performance in terms of Recall@10 and NDCG@10 across
Office and Baby datasets, and it achieves optimal performance in
terms of Recall@10 and NDCG@10 when component number 2𝑛+1
equal to 2 (𝑛 = 0) across Sports and Clothing datasets. When the
component number is larger than 4 (𝑛 > 1), the performance does
not improve, but rather has a negative influence. We attribute this
situation to: four components are sufficient for the multimodal
information encoder, a larger component number means higher
diversity, which might introduce noise, resulting in suboptimal
performance.

2 4 8 16
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0.100
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2 4 8 16
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Office Baby Sports Clothing

Figure 4: Effect of Algebra Component Number 2𝑛+1.

5.7.2 Performance Comparison𝑤.𝑟 .𝑡 𝐿. As results show in Figure 5,
we observe that the optimal value of layer number 𝐿 is different
across datasets: In terms of Recall@10 and NDCG@10, the frame-
work achieves the best performance at 3 on the Baby, Sports, and
Clothing datasets, and 2 on the Office dataset. Compared to other
datasets, the Office dataset has a lower sparsity of user-item inter-
action, which means shallower GCNs are enough to extract the
latent relationship, and the shallower message passing can avoid
noise amplification.

5.7.3 Performance Comparison 𝑤.𝑟 .𝑡 𝜆 and 𝜆𝑠 . We analyze the
effect of the regularization balancing hyper-parameter 𝜆 (shown in
Figure 6). In terms of Recall@10 and NDCG@10, HPMRec achieves
the best performance at 1𝑒−2 on Baby, Sports, and Clothing datasets,
and for Office, 1𝑒−3 is best. As for the results of self-supervised
learning regularizer 𝜆𝑠 shown in Figure 7, we find the same optimal
setting (1𝑒−2) for all other three datasets except for the Clothing
dataset. For the Clothing dataset, 1𝑒−4 is best.
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Figure 5: Effect of GCN Layer Number 𝐿.
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Figure 6: Effect of Balancing Hyper-parameter 𝜆.
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Figure 7: Effect of Balancing Hyper-parameter 𝜆𝑠 .

In summary, being flexible in choosing the hyper-parameter
settings will allow us to adapt our model to multiple datasets. Al-
though the optimal setting of these hyper-parameters varies, the
performance differences are minimal, demonstrating the robustness
and stability of HPMRec on different datasets.

6 Discussion
Based on the model implementation description in Section 4 and
the results analysis of comprehensive ablation experiments in Sec-
tion 5.5, we have the following discussion and interpretation of the
effectiveness of each module of HPMRec and our design principles.
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6.1 Model Joint Optimization
As shown in Section 4, our HPMRec adopts multiple modules to
jointly optimize. The result analysis in Section 5.5 shows that each
components have a positive effect on HPMRec. We will further dis-
cuss the crucial synergy and mutual constraints between modules
that influence the model optimization. The prompt-aware compen-
sation mechanism keeps the core modality-specific feature. Mean-
while, real-imag discrepancy expansion task enhances the ability of
user/item representation to mine more modality-specific features,
which can enhance the diversity of representation. These two mod-
ules’ mutual constraints ensure that the representation will not
lose the core modality-specific features in the pursuit of diversity,
and deviate from the reasonable semantic space. However, the high
diversity of each modality’s representation will increase the gap be-
tween different modalities. To align different modalities and benefit
the modality fusion, we design the cross-modality alignment task
and MI enhancement fusion strategy. These two modules’ synergy
ensures that the gap between modalities does not affect modal-
ity fusion. In general, thanks to the prompt-aware compensation
mechanism, the representation of each modality retains the core
modality-specific features while mining more modality-specific
features under the optimization of the real-imag discrepancy ex-
pansion task. With the joint optimization of all modules, HPMRec
achieves state-of-the-art performance.

6.2 Maximize the Ability of Prompt
Through the analysis of variantHPMRec𝑤 Explicit in Section 5.5,
we found that the learnable prompt can perform better in implicit
guidance than explicit guidance. We attribute this phenomenon
to the unsuitable optimization task and insufficient utilization of
the powerful dynamic optimization capabilities of the learnable
prompt. In our framework HPMRec, the main recommendation
task and the self-supervised learning tasks implicitly optimize the
prompt to facilitate the learning of core modality-specific features
while avoiding the introduction of modality differences, and ensure
a sufficiently flexible feature space (solution space) [11] to enhance
user/item representations. Therefore, when there are no suitable
explicit optimization task, utilizing implicit optimization tasks to
ensure a sufficiently solution space of the learnable prompt can
maximize its ability.

7 Conclusion
In this paper, we propose HPMRec, a hypercomplex, prompt-aware
multimodal recommendation framework that enriches feature di-
versity and bridges semantic gaps across modalities. Specifically,
HPMRec encodes each modality into a multi-component hypercom-
plex embedding, leveraging the multi-component representation
ability of hypercomplex algebra to capture diverse modality-specific
features. Secondly, HPMRec leverages the hypercomplex multiplica-
tion as naturally nonlinear fusion between modality pairs, thereby
exploring more latent cross-modality features. Moreover, to mit-
igate component misalignment and keep core modality-specific
features, we introduce a prompt-aware compensation mechanism
that dynamically compensates each component, and this module
also mitigates the over-smoothing problem. Finally, we design self-
supervised learning tasks to further assist modality fusion and

enhance the diversity of modality features. Extensive evaluations
on four public datasets demonstrate that HPMRec outperforms
state-of-the-art baselines in recommendation performance.
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